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1. Introduction 
 

A siphon phenomenon or siphoning often refers to the 
movement of liquid from a higher elevation to a lower 
one through a tube in an inverted U shape (whose top is 
typically located above the liquid surface) under the 
action of gravity, and has been used in a variety of real-
life applications such as a toilet bowl and a Greedy cup. 
However, liquid drainage due to siphoning sometimes 
needs to be prevented. For example, a siphon breaker, 
which is designed to limit the siphon effect by allowing 
the gas entrainment into a siphon line, is installed in 
order to maintain the pool water level above the reactor 
core when a loss of coolant accident (LOCA) occurs in 
an open-pool type research reactor [1,2]. In this paper, 
we develop a theoretical model to predict the siphon 
breaking phenomenon. 

 
2. Methods and Results 

 
2.1 One-dimensional Theory 

 
Figure 1 illustrates the schematic of a simple siphon 

system consisting of a reservoir connected with a siphon 
line, and a siphon-breaking hole located at the top of the 
siphon line. Assuming that the siphon line diameter is 
much smaller than the tank diameter; single-phase flow 
of water exists between the points 1 and 2; single-phase 
flow of air exists between the points 0 and 2; two-phase 
flow of air-water mixtures exists between the points 2 
and 3; air and water travel at the same velocity between 
the points 2 and 3 (homogeneous model), the extended 
Bernoulli equation between the points 1 and 2 can be 

written as [3] 
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where ρw is the density of water, and K12 is the pressure 
loss coefficient between the points 1 and 2. Likewise, 
the Bernoulli equation between the points 0 and 2 is 
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where ρg is the air density, K02 denotes the pressure loss 
coefficient between the points 0 and 2, and V02 is the air 
velocity through the siphon-breaking hole. Provided that 
the mixture density of two-phase flow is constant under 
a homogeneous flow assumption, one can obtain 
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in which K23 is the pressure loss coefficient between the 
points 2 and 3, Φ2 is the two-phase multiplier, and A2 
and A3 are the cross-sectional area of the siphon line and 
the break area, respectively. The mixture density ρ2ϕ is 
defined by 
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where the void fraction in the two-phase flow region 
that connects the points 2 and 3 is 
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Here A0 denotes the cross-sectional area of the siphon-
breaking hole. Then, the relationship between the water 
velocity V12 and mixture velocity V23 can be obtained 
from the continuity equation 
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In Eq. (3), the two-phase multiplier Φ2 is computed by 
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Meanwhile, the mass balance equation reads as 
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where A1 is the cross-sectional area of the reservoir. 
 

Fig. 1. Schematic of a simple siphon system with a siphon-
breaking hole 
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2.2 Siphon Breaking Phenomenon 

 
We first investigate the fundamental features of the 

siphon breaking phenomenon. The prediction is carried 
out using a computation-aided siphon breaking analysis 
(CASBA) code, which is developed to solve the present 
1-D model with the Euler method [4], while the input 
parameters are set based on the previous experimental 
conditions [2]: water density ρw=1000 kg/m3; air density 
ρg=1.2 kg/m3; siphon-breaking hole diameter D0=30 mm 
(A0=7.069×10-4 m2); reservoir area A1=14.4 m2; siphon 
line area A2=0.1198 m2; break area A3=0.051 m2; initial 
water level in the reservoir z1,0=4 m; siphon-breaking 
hole location z2=3.35 m; pipe rupture location z3=−8.25 
m; ambient pressure P0=P1=P3=101.3 kPa; pressure loss 
coefficients K02=0.5, K12=0.6, K23=4.85. Also note that 
the siphon-breaking hole is assumed to be open with no 
delay, when the water level inside the reservoir (or pool) 
falls below z2. 

Figure 2 now displays the temporal variations of pool 
water level, superficial velocity inside the siphon line, 
pressure at point 2, and void fraction in the two-phase 
flow region, which are normalized by z2, V12,i, and P0. 
Here the subscript i denotes the initial stage at which the 
water in the siphon line is exposed to the surrounding 
air. At a siphoning stage (e.g. t+<0.2), it is shown that 
the pool water level and pressure at point 2 decrease as 
water siphons out from the reservoir. Once the siphon-
breaking hole is open (e.g. t+>0.2), ambient air is then 
entrained into the siphon line by the pressure difference 
between the points 0 and 2, two-phase flow of air-water 
mixtures is formed downstream of the siphon-breaking 
hole, resulting in sudden increases in pressure and void 
fraction as well as a rapid drop in superficial velocity. It 
follows that the superficial velocity decreases, pressure 
at point 2 decreases with the decreasing water level, and 
the void fraction in the two-phase flow region increases. 
Consequently, siphoning is broken completely and the 
pool water level reaches the saturated value. All these 
results are consistent with the experiment, implying that 

the present 1-D model predicts well the basic features of 
the siphon breaking phenomenon.  

 
2.3 Undershooting Height 

 
Figure 3 shows the size effect of the siphon-breaking 

hole on the undershooting height Hu, which is defined 
by the elevation difference between the siphon-breaking 
hole and the saturated water level. As expected, it can 
be seen that the undershooting height decreases with an 
increase in the siphon-breaking hole diameter, because 
the air entrainment becomes more prominent at a larger-
sized hole. It is also noteworthy that overall agreement 
between the prediction and experiment is fairly good, 
although the present 1-D model slightly overestimates 
the undershooting height. 

 
3. Conclusions 

 
In this paper, a theoretical model to predict the siphon 

breaking phenomenon is developed. It is shown that the 
present model predicts well the fundamental features of 
the siphon breaking phenomenon and undershooting 
height. 
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Fig. 2. Temporal variations of pool water level, water velocity 
and void fraction in the siphon line, and pressure at point 2 

 
Fig. 3. Undershooting height vs. siphon-breaking hole size 
relationship 


