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1. Introduction

An asymptotic analysis method to evaluate the stress
intensification of an LWR fuel rod cladding tube
suffered from the expansion of a cracked pellet in a
PCMI (Pellet Cladding Mechanical Interaction) [1,2].
As a starting point, a bonded condition was assumed
between the wedge and half plane, which were modeled
as a pellet fragment and a zirconium alloy cladding tube,
respectively. An eigenvalue problem was formed from
the model using the geometry and (bonded) contact
conditions. As a result, two eigenvalues, associated with
the stress singularity at the contact edge, were produced.
A finite element analysis technique to calculate the
generalized stress intensity factors was also presented in
these papers, which would be used as the calibration
factors to evaluate the actual stresses when the pellet
fragments expand the cladding in the PCMI.

This analysis is further extended in this paper to
accommodate a more realistic condition of the PCMI
such as a frictional contact between two adjacent pellet
fragments and a cladding tube. However, this yields a
sophisticated behavior of the eigenvalues depending on
the coefficient of friction (incorporating the direction of
slipping of each fragment) as well as the angle of the
pellet crack. Since the stress field of the cladding is
directly determined from the eigenvalues, it is crucial to
evaluate and investigate them to analyze the PCMI
problem mechanistically, which is pursued in this paper.

2. Eigenvalue problem
2.1 Geometrical model and boundary conditions
Fig. 1 shows a typical section view of an LWR fuel

rod including a cracked pellet, and the geometrical
model for the present asymptotic analysis.

\

Fig. 1. Typical view of PCMI failure and the geometrical
model of the present asymptotic analysis.
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Since the contact stress particularly in the vicinity of
the edge of a pellet fragment and a cladding tube is
concerned in the asymptotic analysis, the cladding tube

and pellet fragments are modeled as a half plane (body
1) and two adjacent parts (body 2 and 3) , respectively.
The crack angle with respect to the cladding inner
surface is defined as ¢ as shown in Fig. 1. A polar
coordinate, (r,6) is chosen with the origin at the two
contact edges of the pellet fragments, and @ increasing
in the counterclockwise direction from the contact
surface.

As for the boundary conditions, a frictional contact
between the fragments and cladding is constituted with
a coefficient of friction, f;. It is set as positive when the
right fragment slips away from the origin (to the right).
When the pellet expands and pushes the cladding
outward, it is regarded that the fragments move apart
from each other. Therefore, during the pellet expansion,
+ f. is applied to the contact between the right fragment
and cladding, while — f. is applied between the left
fragment and cladding. On the other hand, a traction
free condition is assumed between each fragment
during expansion owing to the crack between them.

The above condition yields the following boundary
conditions for the problem definition.

¢) 0, Ga&(”’(ﬂ)zoa Urza(”’(”)zoa
o-rg(r,w):o, 0}99(“0):0';5‘(%0)’

(
ué(r,O)zuz(r,O), utlg(r,—iz)=u2(r,7r). (1

where, oy, u; (i, j = r, 0) designate the stress and
displacement ~ components, respectively. The
superscripts identify the body number.

2.2 Formulation

To form a characteristic equation for the asymptotic
analysis, the Airy stress potential exploited by Williams
[3].is used, which is shown as follows.

@ = r*acos(A +1)0 + bsin(1 +1)0
+c cos(/i - 1)9 +d sin(/i - ]1):9} )

where, @ is the Airy stress potential, 4 is an eigenvalue
that will determine the stress singularity (when 4 < 1),
and a-d are the unknown constants to be determined
corresponding to the boundary conditions of the
problem.

By applying the well-known formulae of the
relationship between the stress and displacement
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components and the Airy stress potential [4], a
simultaneous equation of twelve homogenous equations
is obtained from Eq. (1). To obtain non-trivial solutions,
a;-d; of the simultaneous equation, the determinant of
the coefficient (12x12) should be null, algebraically.
This provides a characteristic equation of the eigenvalue,
A. The final form of this is shown below.

Fla.B.o.f.:2)=0. 3)

where a, f are the Dundurs constants that describe the
material mismatch of the contacting bodies [5]. For the
present material combination, shown in Table 1, it is
obtained as a = 0.432748, = 0.0973693.

Table 1. Material properties of the pellet and cladding tube
used for the present analysis

Component Material E (MPa) v
Pellet uo2 185288 0316
Cladding tube Zry-4 72076 0.34

Egs. (4) and (5) are the stress equations in the case of
two contacting bodies. However, the present
configuration of Fig. 1 consists of three bodies mutually
in contact so it is anticipated that the relevant
characteristic equation may have a different number of
eigenvalues depending on the specific conditions. This
kind of a contact problem consisting of three bodies has
not been presented previously. Thus, this paper may be
the first to provide a solution to the problem of mutually
contacted three bodies.

Returning back to Eq. (3) for the present contact
configuration of Fig. 1, we found that there was only
one eigenvalue, 4, (for A4; < 1) when 0 < /. < 0.9, which
is provided in Table 2. Therefore, the asymptotic form
of the stress equation will follow Eq. (5). However, two
eigenvalues were found when -0.9 < f. < -0.1 although
they are not included in Table 2.

Table 2. Eigenvalues evaluated for the present contact
problem (a = 0.432748, = 0.0973693, = 90°), Fig. 1.

3. Numerical example and discussion
3.1 Description of asymptotic stress field

From Eq. (3), it is readily known that 1 depends on o,
p, @ and f.. To reduce the number of independent
variables, the contact angle, ¢ is fixed as 90°, but the
coefficient of friction, f. is varied as 0-0.9 in this work.
It is intended that the variation of f. will show the
influence of shear force on the contact between the
pellet and cladding during the pellet expansion. A larger
f. implies more expansion. In previous work where a
bonded contact between a wedge and a half plane [1,2]
was assumed, there occurred two eigenvalues, say, 4
and A;which were associated with the stress singularity,
i.e. 0 <1 <Ay <1.In this case, 4; and 1;; gave a stronger
and a weaker singularity, respectively. Then, the
asymptotic stresses were written as follows.

o;(r0)= K17 £1(0)+ K yyr ™ 171 (6) (4)

where, K;, Kj; are the generalized stress intensity factors
(GSIFs) of mode I and mode II, which calibrate the

eigensolutions, pHl fil-‘ (9), (k = 1, 1I), incorporating

the actual loading and dimensional conditions to
evaluate the actual stress values.

On the other hand, in the case of a frictional contact
between two contacting bodies, there occurred only one
A=A and 4} < A, < 4 [6]. In this case, the asymptotic
stresses are to be written as follows.

O'I-J.(r, 9)=K5r’1s_lf,j(9). (5)

3.2 Eigenvalue behavior

I 0 0.1 0.3 0.5 0.7 0.9

As | 0.458 | 0479 | 0.522 | 0.567 | 0.615 | 0.667

If . = 0.5 is chosen for an example case, the spatial
variation of the eigensolution, i.e. f;(6) is as shown in
Fig. 2.

£, (9)
1

W

X

3 > -6 (rad)
x

L

Fig. 2. Spatial variation of f;(6) when o = 0.432748, f =
0.0973693, @=90° and . = 0.5; red solid: f,,(#), blue dash:

Sro (6’) , black dash and dot: f,,(6).

To evaluate the actual stress field in the area around
the contact surface between the cladding and adjacent
pellet fragments, a finite element analysis may be
conveniently used to calculate the GSIF, K. In the case
of the bonded contact of two bodies, mode separation
angles were looked for and each GSIF was calculated at
each separation angle [1,2].

However, for the present case, the angle of the
contact surface (¢ = 0°) may be chosen as a proper
location to calculate K, due to the occurrence of a single
GSIF as well as the present character of a frictional
contact. The normal stress component at the contact
surface, oy, may be an appropriate parameter for the
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GSIF calculation. Thus, K, can be evaluated from the
following equation.

K _ 11 690(7",0)‘ l"l_/ls
T S 99(0)

(6)

5. Conclusions

In the sequel to the previous work of an asymptotic
analysis of a bonded contact between a wedge and a
half plane (two bodies in contact) [1.2], a frictional
contact problem of three bodies mutually contacted is
considered here to simulate a further actual contact
configuration of a cracked pellet and a cladding tube in
PCMI. As a first step, a corresponding eigenvalue
problem is formulated and the behavior of the
eigenvalues is investigated in this work. The case of a
90° pellet crack is analyzed as a plausible example. The
results are summarized as follows.

1) The number of eigenvalues associated with the
stress singularity (i.e., eigenvalues less than unity)
varies depending on the coefficient of friction, f,.
There is one eigenvalue when 0 < £, < 0.9 but two
eigenvalues appear when -0.9 <f. <-0.1.

2) In the PCMI condition, a positive f is thought to be
applied to accommodate the pellet expansion. This
results in the corresponding asymptotic stress field

having the form of oy (7’, 9) = Ks”ls_lfg'(‘g)-

3) The spatial variation of f;( ) of the stress equation is
provided which will be used for a finite element
analysis to calculate the generalized stress intensity
factor.
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