Transactions of the Korean Nuclear Society Autumn Meeting Pyeongchang, Korea, Oct. 29-31, 2014

Study on the ISO 15926 based data modeling methodology for nuclear power industry

Kyungik AN, PartDB Yoon Sang CHO, KHNP CRI Youjin PARK, KHNP CRI

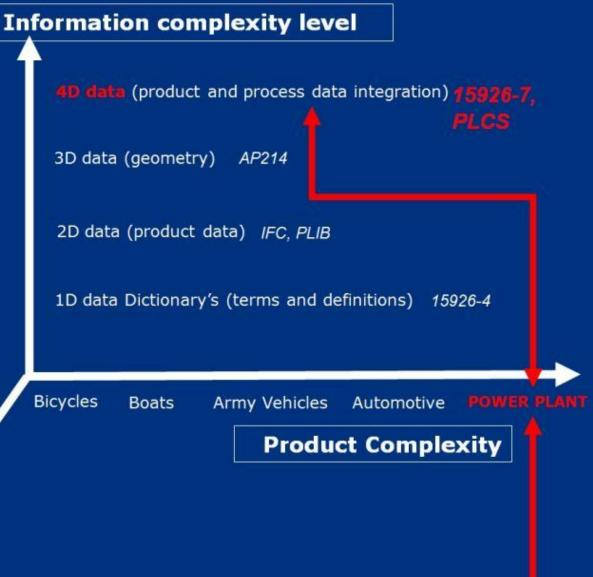
Agenda

- Introduction
- Technology Intro
- NPP Class Extension
- Conclusion
- Reference

Introduction

- ISO15926 is an international standard for the representation of process plant life-cycle information. The scope is data integration and data to support the whole life of a plant. This representation is specified by a generic, conceptual Data Model (DM) that is independent of any particular application, but that is able to record data from the applications used in plant design, fabrication and operation. The data model is designed to be used in conjunction with Reference Data (RD): standard instances of the DM that represent information common to a number of users, plants, or both.
- This paper introduces a high level description of the structure of ISO 15926 and how this can be adapted to the nuclear power plant industry in particular.
- ✓ ISO15926: Integration of life-cycle data for process plants including oil and gas production facilities

Product Complexity


Product Design Complexity	High	Missiles Satellites Ordinance	Business Aircraft Special Ind.Equipment Telecom Switchgear Aircraft Engine Avionics	Military ship Commercial Ship Military Aircraft Commercial Aircraft Submarine Power Plant Oil production Rigs
	Medium	Computers Leisure Vehicles Radio/Rader	Automobiles Transmissions Special M/c Tools Agricultural Machinery Engines	Power turbine Mining Equipment Trucks Landing Gear Elevators Process Plant Army Vehicles
	Low	Domestic Appliances Consumer Electronics Bicycles Exhaust Systems	Boats Lawn Equipment Rail Cars Transformers	Pumps Valves Filters Brakes
Low Medium Hig Product Support Cor			High pport Complexity	

Information Complexity

Engineering and construction support

Supply chain and logistics support

Quality management

Operation and maintenance support

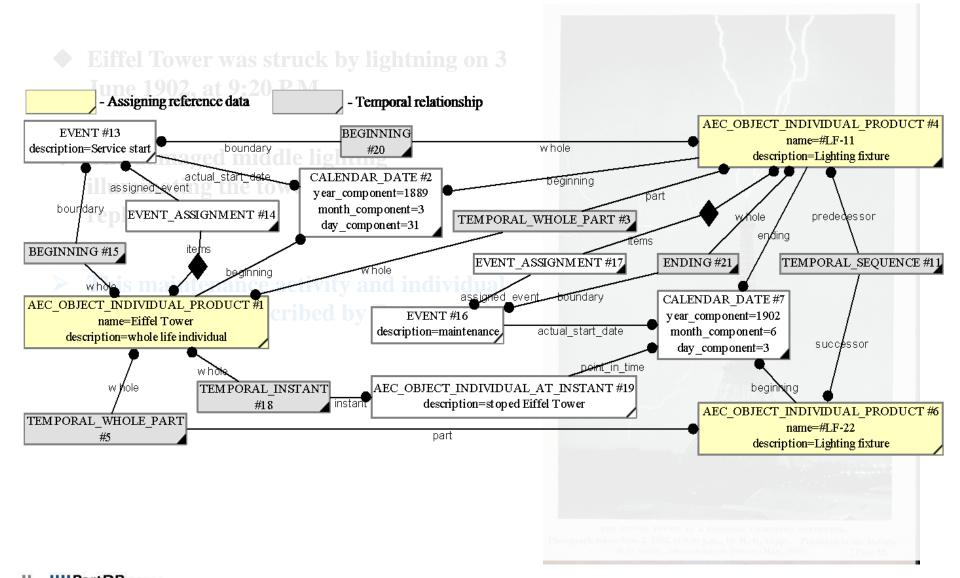
Knowledge management

Long term archiving

Application area

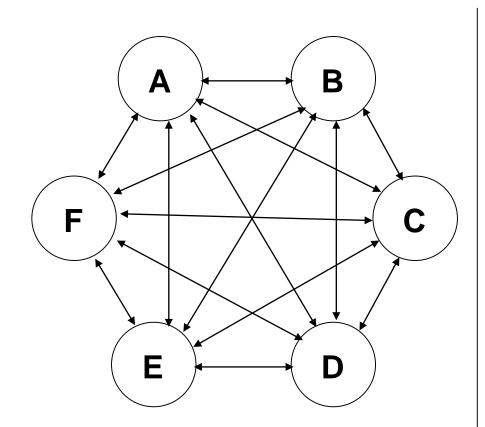
*REF: 57th ISO TC184/SC4 Group Meeting, Parksville, USA. 2009.05 5

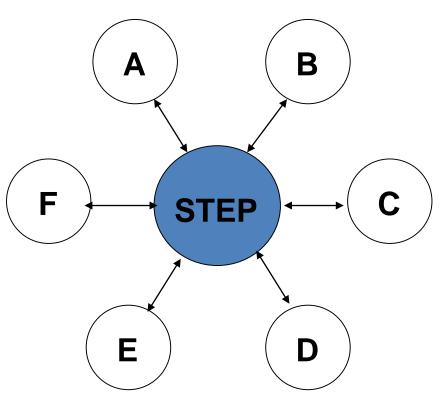
Historian



Product Data Model

- Eiffel Tower was struck by lightning on 3 June 1902, at 9:20 P.M.
- The damaged middle lighting illuminating the tower had to be replaced.
- This maintenance activity and individual objects can be described by Data model

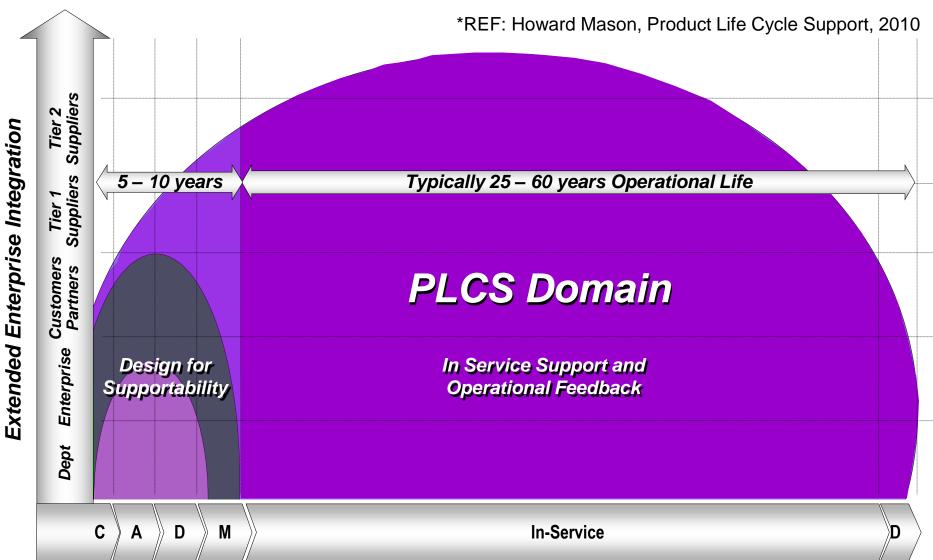

Product Data Model


III PartDB co Ltd. III I (주) 中世に前han Kim, Kyungik AN, The Underlying Logic for STEP based Generic AEC Model Structure, ICCCBE, 2008 8

ISO/STEP

STandard for the Exchange of Product model data

Direct translation: 30 translators for 6 systems (what do we archive?)


Neutral file method: 12 translators for 6 systems (STEP suitable for archiving)

Data exchange issue During the Life Cycle

between	 Data exchange between consortium partners, architect engineers,	
partners &	key engineering contractors Data exchange between equipment suppliers (component data,	
suppliers	operation & maintenance)	
between projects	Modularization of plant and Engineering "re-use" Information/ Configuration Management across plants	
between EPC & O/O	 Handover of "virtual plant" into Owners system Consider Owner/ Operators need for operation and maintenance Consider plant life time (80 years) data maintainability 	
between	 Data management & configuration management between the	
tools	modules of the IMS Interfacing ERP, EDM, PMS, and design tools of specific disciplines	

ISO 10303-239 PLCS Product Life Cycle Support

Product Life Cvcle

ISO 10303-239 PLCS Product Life Cycle Support

Product Description

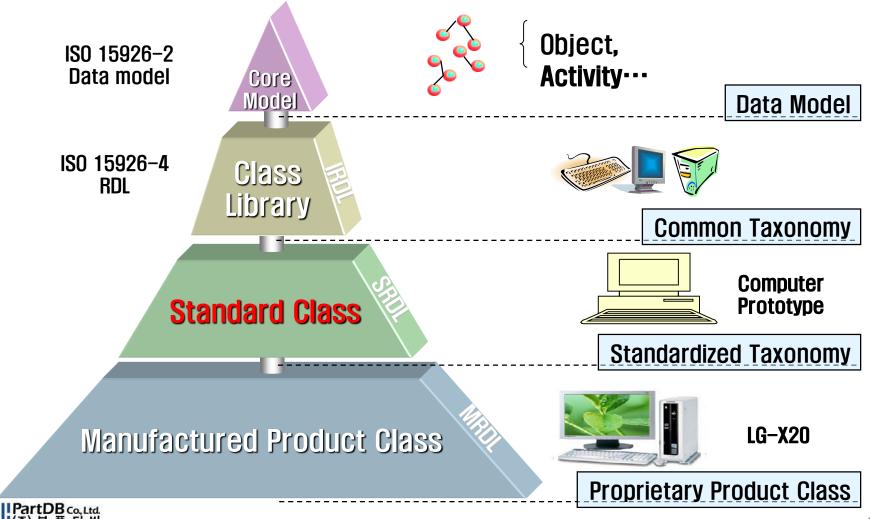
Capability to define product requirements and configuration, including relationships between parts and assemblies in multiple product structures (as-designed, as-built, as-maintained)

Work Management

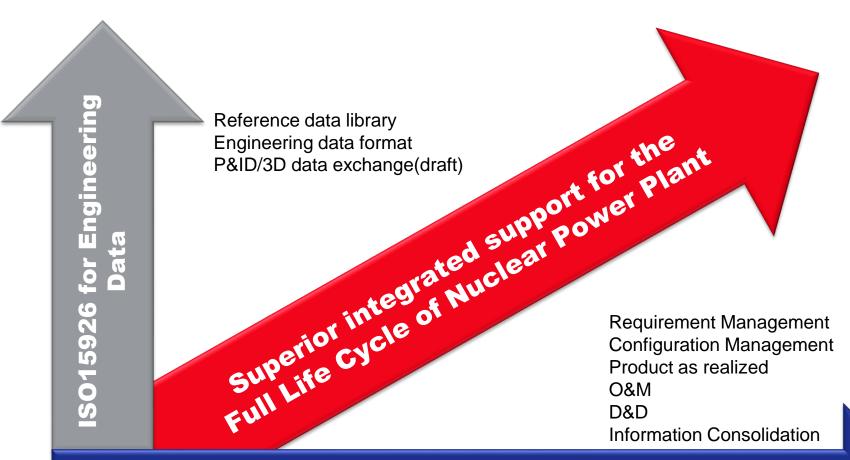
Capability to request, define, justify, approve, schedule and capture feedback on work (activities) and related resources.

Property, State and Behaviour

Capability that describes and captures feedback on product properties, operating states, behaviour and usage

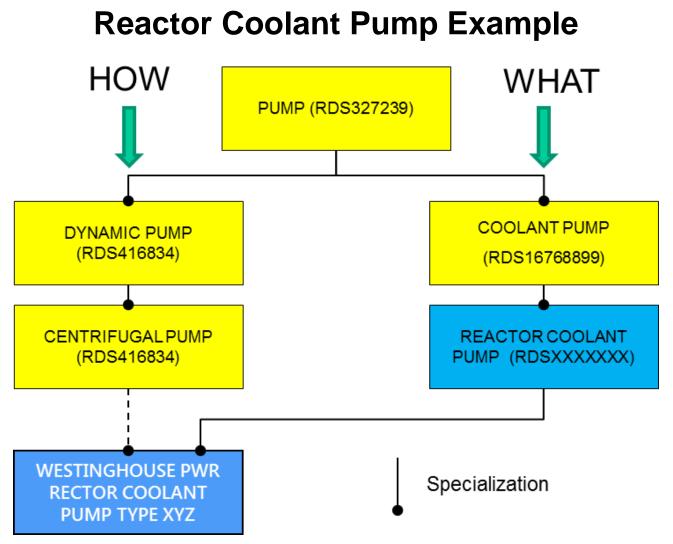

Support Solution and Environment

Capability to define the necessary support for a given set of products in a specified environment and to define support opportunity, facilities, personnel and organizations

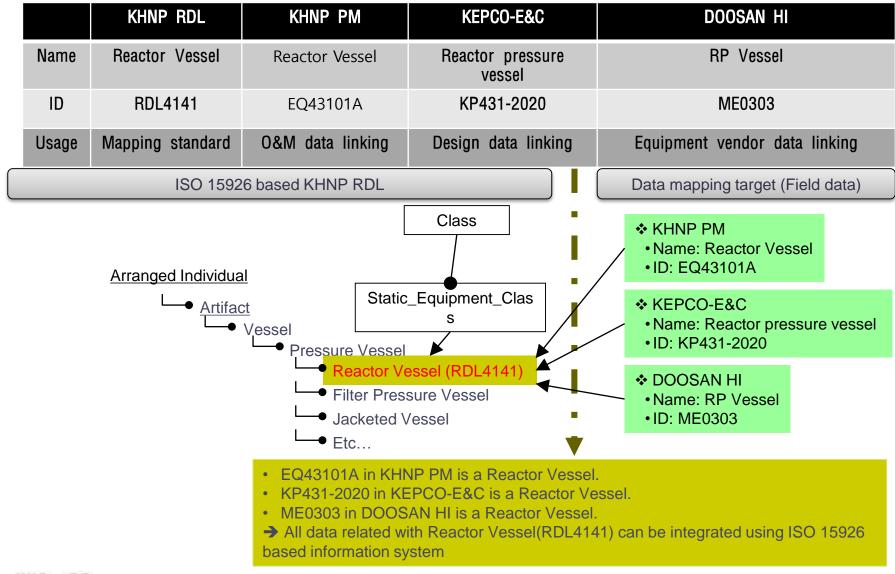


ISO 15926

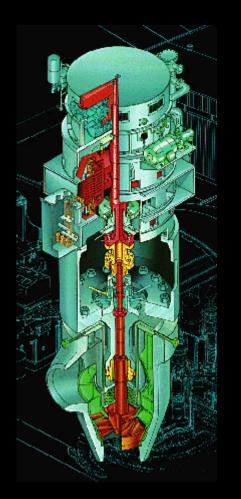
Integration of life-cycle data for process plants including oil and gas production facilities

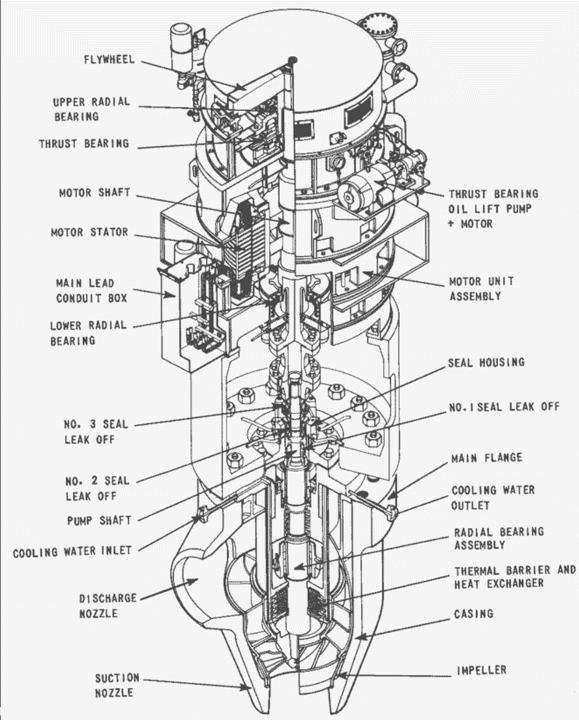

The Best Breed

PLCS: from Client Requirements to Decommision = Full Life Cycle Support (Systems Engineering)



Extension of ISO 15926 RDL




Extension of ISO 15926 RDL

Westinghous RCP MB3596

*REF: http://www.nucleartourist.com/systems/rcs1.htm

Classes that represent main parts of a RCP

ltem	Description	Class	URI			
1	Impeller	PUMP IMPELLER	http://data.posccaesar.org/rdl/RDS816299			
2	Suction nozzle	INLET NOZZLE	http://data.posccaesar.org/rdl/RDS43167562153			
3	Discharge nozzle	DISCHARGE NOZZLE	http://data.posccaesar.org/rdl/RDS402642231			
4	Casing	SINGLE TYPE CASING	http://data.posccaesar.org/rdl/RDS881459			
5	Thermal barrier	No				
6	Heat exchanger	HEAT EXCHANGER	http://data.posccaesar.org/rdl/RDS304199			
7	Radial bearing assembly	RADIAL BEARING	http://data.posccaesar.org/rdl/RDS6810280			
		BEARING ASSEMBLY	http://data.posccaesar.org/rdl/RDS12956450			
8	Cooling water inlet					
9	Cooling water outlet					
10	Pump shaft	PUMP SHAFT	http://data.posccaesar.org/rdl/RDS869714			
11	Main flange					
12	No. 1 seal leak off					
13	No. 2 seal leak off					
14	No. 3 seal leak off					
15	Seal housing					
16	Lower radial bearing					
17	Main lead conduit box					
18	Motor unit assembly					
19	Motor stator	ELECTRICAL STATOR	http://data.posccaesar.org/rdl/RDS891449			
20	Motor shaft					
21	Thrust bearing	THRUST BEARING	http://data.posccaesar.org/rdl/RDS6810235			
22	Thrust bearing oil lift pu mp and motor					
23	Upper radial bearing					
24	Flywheel	FLYWHEEL	http://data.posccaesar.org/rdl/RDS13662164			

Definition of Pump Impeller

PUMP IMPELLER

|| ||| PartDB Co., Ltd.

rdl:defaultRdsld	"R15904148988"	Classification
rdl:hasCreationDate	"1999.10.26"	Classifier NORSOK Z-CR-002 EQUIPMENT CLASS
rui.nasoreationbate	1999.10.20	 PUMP COMPONENT CLASS
rdl:hasCreator	"u20683"	ClassOfIndirectProperty
rdl:hasDefinition	"An impeller that forms part of a rotating assembly of a pump imparting kinetic	Property Space LOWER LIMIT IMPELLER DIAMETER
		RATED IMPELLER DIAMETER
	energy to the liquid being pumped."	UPPER LIMIT IMPELLER DIAMETER
rdl:hasDesignation	"PUMP IMPELLER"	 UPPER LIMIT IMPELLER HEAD AT RATED SPEED
		ClassOfIdentification
rdl:hasIdPCA	"RDS816299"	Pattern • rdl:RDS6192912
rdl:hasStatus	"Incomplete"	 rdl:RDS6713607
rdf-turn o	p2:ClassOfInanimatePhysicalObject	 rdl:RDS6714627
rdf:type		 rdl:RDS999707260
rdfs:label	"PUMP IMPELLER"	ClassOfAssemblyOfIndividual
owl:sameAs	http://posccaesar.org/rdl/RDS816299	ClassOfWhole • CENTRIFUGAL PUMP
		Subalase AVIAL ELOW DUMD IMPELLED

http://data.posccaesar.org /rdl/RDS816299

- Subclass AXIAL FLOW PUMP IMPELLER
 - CLOSED PUMP IMPELLER
 - DOUBLE SUCTION PUMP IMPELLER
 - INDIVIDUALLY SECURED PUMP IMPELLER
 - MIXED FLOW PUMP IMPELLER
 - OPEN PUMP IMPELLER
 - RADIAL FLOW PUMP IMPELLER
 - SEMI-OPEN PUMP IMPELLER
 - SINGLE SUCTION PUMP IMPELLER

Definition of Operating Weight

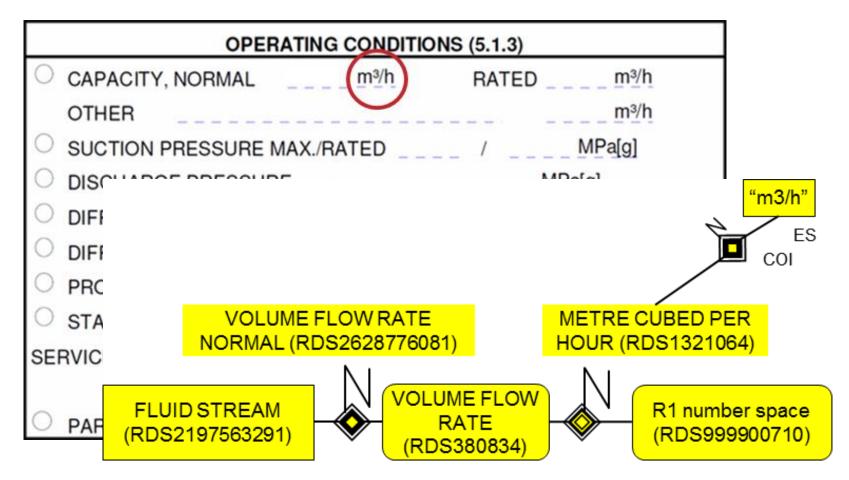
OPERATING WEIGHT

- rdl:defaultRdsId "RDS1661800301"
- rdl:hasDesignation "OPERATING WEIGHT"
 - rdl:hasIdPCA "RDS1661800301"
- p2:hasClassOfPosse... ARTEFACT
- p2:hasPropertySpace WEIGHT RANGE
 - rdf:type p2:ClassOfIndirectProperty
 - rdfs:label "OPERATING WEIGHT"
 - owl:sameAs http://posccaesar.org/rdl/RDS1661800301

Specialization

Superclass • ISO 15926-4 INDIRECT PROPERTY

Classification

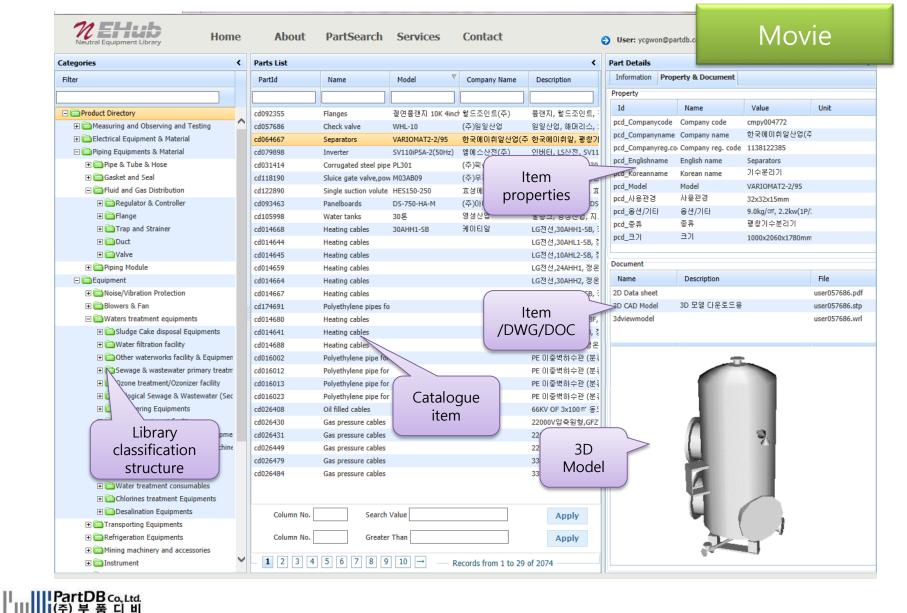

- Classifier ISO TS 15926-4 (2007) PROPERTY CLASS
- Subclass CALCULATED OPERATING WEIGHT
 - CATALOGUE DATA OPERATING WEIGHT
 - ESTIMATED OPERATING WEIGHT
 - WEIGHED OPERATING WEIGHT

|| |||||PartDB co, Ltd. | |||||||||(주) 부품 디비

http://data.posccaesar.org /rdl/RDS1661800301

Usage of ISO 15926 RDL

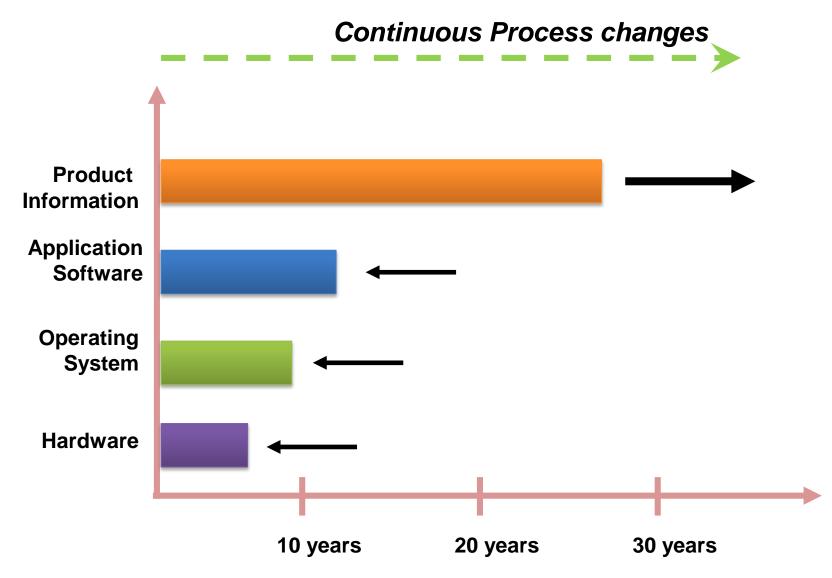
API 610 data sheet for Centrifugal Pumps has a section called "OPERATING CONDITIONS"



Class library extension

Legacy library data 2-ComponentData_090807_2.xls [호환 모드] - Microsoft Excel - 0 ♡ (?) - ₽ 🐹 A2 fx omponentData 090807 2.xls [호화 모드] - Microsoft Excel _ 🗊 🗙 Standardized class library Name V 🕜 🗆 🗗 X fx | ROTAMETER FIT8275G #150 RF 1/2 D9 PP8AFTTP2-25 **PPSAF** A PE1AB1E02-25 PE1AE _ 8 × step파일 내 외부참조되 Library data instance _ 8 × PFNABTTM2-25 PFNAE Tribon Instance ID 🖂 🔚 P3 PG-I8T32M9-25 PGJ8T PPSAFPPB2-50 iso15926facade × VVB61-25 VB614 VVB61-25 13 Reasons for upgrading to Professional/Enterprise/Ultimate: Write gueries 10x faster using Smart Autocomplete 🔤 facadeuser@localhost VVB61-50 VVGL46-25 VGL46 5 14 🗉 📄 information_schema 🗞 Query VVB33-20 🖃 📄 iso15926facade PRJCUPTK250-25 PBJCU 16 • 🖃 📗 Tables VVC60-50 🕀 🔝 jena_g1t0_reif PP8AFPP82-50 PPSAF 18 VVGL46-25 🖭 🥅 jena_giti_stml 😝 1 Messages 🔲 2 Table Data 🐓 3 Info 🔞 4 History 19 VFIT8275G-15 - 9 🕀 🔲 jena_g2t0_reif 20 PLDAB1EC250-25 PLDAE 🜇 🔿 Forr 💿 Gric 🔽 Limit rowFirst 🗉 🔳 jena_g2t1_stmt I (▶ # of 1000 Refresh 21 10 PE1AB1EC2-25 22 000400040-60 PERAF ⊞ 🧾 jena_g3t0_reif PEPCUPPB2-50 Obi 11 Prop Graph] 🔺 28 🗉 🔲 jena_g3t1_stml PGJ8T32M9-50 Uv::http://oim.Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Uv::http://tpl.rdlfacade.org/data#ST-3401: PGJ8T 24 12 PPSAETTP2-25 jena_g4t0_reif **F** 25 Bv::509flc99:13'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: 🕀 🔲 iena_q4t1_stmt 13 PPSAFTTP2-15 26 VVC60-50 VC607 Uv::http://oim..Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc8: 🕀 🥅 jena_q5t0_reif 27 PSAAB1EC2-20 14 🕀 🔲 jena_g5t1_stmf Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#temporalWhole: PLDAE 28 PLDAB1EC250-20 PSAAB1EC2-25 🕀 🔝 jena_g6t0_reif 15 Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#Pipe: 29 + iena_q6t1_stml PEPCUPPB2-50 PEPCU 16 30 PTJAB1EC2-15 □ Bv::509flc99:13 Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: 🕀 🔲 jena_g7t0_reif 81 Uv::http://oim.Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc7: 17 PTJAB1EC2-25 82 VVB61-50 VB617 🕀 🔲 jena_g7t1_stm1 Bv::509flc99:13 Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#possessor: 표 🔳 jena_graph 88 18 PLDAB1EC250-25 PXXBV Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#Pipe: 84 PXXBWNCC8-50 🗉 🔳 jena_long_lit PLDAB1EC250-20 19 Bv::509flc99:13'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: 85 🗉 🔳 jena_long_uri PRHCUPTK250-15 PRHOL 20 36 PGJ8T32M9-25 Uv::http://oim.Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc6: 🕀 🔲 iena_prefix 37 🕀 🔲 iena_svs_str Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#propertyType: 21 PGJ8T32M9-50 38 PXXBWNCC8-15 PXXBV 🗉 📜 Views Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#Description: 22 39 PGJ8T32M9-15 표 🧵 Stored Procs VB333 Bv::509flc99:13'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: 40 VVB33-20 PXXBWNCCS-50 23 + Functions 41 Uv::http://rdl./Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc5: 🕀 📗 Triggers 42 PSAAB1EC2-20 PBAAE 24 PXXBWNCCS-15 Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://oim.dsme.co.kr/data#isPossessorIn: Events 43 25 PFRABPPM2-50 Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://oim.dsme.co.kr/data#PipeDescription: PRHO 🗉 📄 mysql 44 PRHCUTTX220-15 Uv::http://oim.Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://rds.posccaesar.org/2008/02/0WL/IS0-15926-2 2003#ClassOfM 45 26 PFNABTTM2-25 🗉 📄 test PTJAB1E02-15 46 PTJAB Uv::http://oim.Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Uv::http://tpl.rdlfacade.org/data#ST-3401: 27 PFNABTTM2-15 47 Bv::509flc99:13'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: PRJCUPTK250-25 48 28 Uv::http://oim..Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc4: PP8AFTTP2-15 PPRAF 49 PRHCUPTK250-15 29 Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#temporalWhole: ITribon Instance 30 PBHCUTTX220-15 Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#Pipe: PRHCUTTX225-15 Bv::509flc99:13 Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: 31 Uv::http://oim..Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc3: H + ► H Tribon Instance Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#possessor: 준비 🛅 Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#Pipe: Bv::509flc99:13 Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: Uv::http://oim.Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc2: Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#propertyType: Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#TotalWeight: Bv::509flc99:13'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: Uv::http://oim.Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc1: Bv::509flc99:13'Uv::http://www.w3.org/2002/07/owl#onProperty: Uv::http://tpl.rdlfacade.org/data#unitOfMeasure: || ||| PartDB co, Ltd. Bv::509flc99:13 Uv::http://www.w3.org/2002/07/owl#allValuesFrom: Uv::http://rdl.dsme.co.kr/data#Kilogram: Bv::509flc99:13 Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type: Uv::http://www.w3.org/2002/07/owl#Restriction: Uv::http://rdl./Uv::http://www.w3.org/2000/01/rdf-schema#subClassOf: Bv::509f1c99:137179ea59d:-7fc0: Brr. . 500flc00.13' Hrr. . http://www.w3. Hu..http://cim_dema_co_br/data#ieDoccaceorTp

System implementation case



Conclusions

- This paper introduces ISO 15926 methodology and how to extend the existing RDL for nuclear power industry.
- As the ISO 15926 representation is independent of applications, interfaces to existing or future applications have to be developed. Such interfaces are provided by Templates that takes input from external sources and "lifts" it into an ISO 15926 repository, and/or "lowers" the data into other applications.
- This is a similar process to the process defined by W3C. Data exchange can be done using e.g. XML messages, but the modelling is independent of technology used for the exchange.
- ISO 15926 based RDL is useful for NPP class standardization and lifecycle data integration.

Importance of Product Information

Engineering IT & VR solutions based on International Standards, PartDB

Q&A

http://www.partdb.com Kyungik.an@partdb.com

