중대사고시 충수된 Cavity 내 二相 자연대류 환경에서 노외 노심용융물 파편잔해층의 발달에 관한 연구

Development of Ex-Vessel Corium Debris Bed

under Two-Phase Natural Convection Flows in Flooded Cavity Pool during Severe Accident

김은호, 이문언, 박현선*

(발표자) 김은호, POSTECH 첨단원자력공학부 박사과정 2014. 10. 31

목 차

Introduction

Motivation / Objective

Test facility / Approach method / Post-process

Experimental results 1 & 2

중대사고는 원전의 설계 기준을 넘어서며 노심 손상을 동반하는 심각한 사고이다.

중대사고의 종료는 노심 용융물의 냉각 가능성에 달려있다.

중대사고에서 노외 노심용융물을 냉각하기 위한 다양한 대응 전략이 있다.

한국의 IVR 전략 북유럽의 BWR 모델

Wet cavity 전략에서 사고의 진행상황과 원전의 구조조건에 따라 접근 방향이 달라진다.

Big drop on the shallow pool

Full fragmentation in a deep cavity pool

다공 특성을 가지는 파편잔해층의 냉각성을 판단하기 위해서는 내/외부 구조정보가 필요하다.

<외부 구조의 영향: bed angle>

<내부 구조의 영향: 입자분포>

기존의 FCI에 집중한 실험에서는 Debris bed의 형상에 대한 결론을 내지 못하였다.

노심용융물 파편 입자 잔해층은 복잡한 형성 과정을 거친다.

< 노심용융물 Debris bed의 형성 과정 >

최근 Two-phase 현상을 고려한 연구들이 Debris bed 의 평탄한 형상을 제기하였다.

B. Zhang et al., NED, 2011
• 격렬한 버블 생성에 따른 Self-leveling 현상
S. Yakush et al., ISAMM2009
• 공동수조 내부의 대류 현상에 따른 평탄화 Debris bed 형성

Objective

11

2009년 Yakush의 simulation 연구를 실험적으로 검증하기 위한 실험을 수행하였다.

Debris bed의 형상에 따라 Dryout Heat Flux가 달라질 수 있다.

기존의 single-phase 실험연구들은 Debris bed의 형상에 대한 답을 주지 못하였다.

🥏 최근의 실험 및 시뮬레이션 연구들은 two-phase 조건이 bed의 평탄화를 가져올 수 있다고 주장한다.

Test facility

바닥에 쌓인 debris bed의 열에 의한 이상(二相) 자연대류를 test pool 바닥의 air로 접근하였다.

Test facility

Two-phase 조건 형성이 가능한 소규모 입자 침적 실험장치를 구축하였다.

- 구성
- 1. 아크릴수조
- 2. 입자공급 깔때기 및 노즐
- 3. 버블발생장치+입자 catcher plate

<실험 장면, (좌) 1-phase 조건, (우) 2-phase 조건>

Pool height : 1 m (Falling height: ~0.7 m) Diameter : 0.6 m Max. Bubble rate : 10~100 LPM

Test facility

실험 입자로는 Stainless Steel (304) cylindrical 입자를 사용하였다.

•	재료:	Stainless steel 304
---	-----	---------------------

- 치수:
- 밀도:
- 1회 사용량:
- 표면처리:

Ф2mm x H2mm 8,000 kg/m³ 1.0 kg

무광 백색 스프레이

Approach method

시간 순차적인 Debris Bed의 발달 특성을 보기 위하여, 'Gap-Tooth' approach를 실험에 적용하였다.

Post-process

결과 입자 Debris bed의 외부 형상 및 부피를 측정하였다.

#04-04	1	2	3	4	5	6	7	8	9	10
a	0.00	0.00	0.06	0.36	0.51	0.59	0.58	0.17	0.00	0.00
b	0.00	0.18	0.84	1.16	1.91	2.04	1.42	1.05	0.21	0.00
c	0.03	0.59	1.24	4.82	11.99	14.05	7.24	1.54	0.78	0.08
d	0.29	0.99	2.40	15.11	32.70	33.93	20.96	5.03	0.82	0.39
e	0.60	1.21	3.79	19.98	39.22	41.74	26.12	6.70	0.61	0.32
f	0.65	1.30	3.43	17.19	30.88	32.62	20.79	4.91	0.69	0.37
g	0.39	1.28	2.36	7.36	15.33	14.13	7.86	1.00	0.47	0.18
h	0.13	1.02	1.79	2.91	3.28	2.27	0.94	0.41	0.31	0.11
i	0.00	0.40	0.91	1.32	1.23	0.95	0.52	0.25	0.22	0.00
j	0.00	0.00	0.18	0.34	0.43	0.40	0.36	0.17	0.01	0.00

Calculated volume information of each cell

Scanning facility

Test cases

대조군인 Quiescent pool condition과 함께 총 10회의 실험을 수행하였다.

Case	Time Sequence							
	t 1	t ²	t ³	t 4	t ⁵			
Quiescent Pool Condition	0	0	0	0	0			
Two-Phase Condition	0	35.4	66.5	94.7	120.9			

*Volumetric heat generation rate 가정: ~4MW/m³

Experimental results

Resultant particle bed의 top 기준 X 축 단면 형상 비교

Experimental results

1. Cavity pool 내부의 이상(二相) 자연대류는 Debris Bed의 top height의 성장을 지연시킨다.

Delay of Dryout Occurrence

Experimental results

2. Cavity pool 내부의 이상(二相) 자연대류는 보다 편평한 Debris Bed 외부 구조를 만든다.

Higher Overall Debris Bed Coolability

21

감사합니다.

