Off-design performance prediction of Radial Compressor of S-CO₂ Brayton Cycle for KAIST Micro Modular Reactor

Oct 30, KNS 2014

SeongKuk Cho, Jekyoung Lee, Seong Gu Kim, Jeong Ik Lee

Nuclear Power & Propulsion Laboratory Dept. Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

CONTENTS

Background

Previous studies

Ш

Ι

Ш

Turbomachinery performance analysis

Summary & Further works

Background

Small Modular Reactor (SMR)

- > SMR concepts in the world
 - Achieve small size
 - Long life of reactor core
- Advantages of SMR
 - Low initial capital cost
 - Site flexibility

KAIST Micro Modular Reactor (MMR)

- Transportable modular reactor
- Economic benefit by series production
- Supercritical CO₂-cooled fast reactor
- Long life core without fuel reloading

Background

Supercritical CO₂ Brayton cycle for Micro **Modular Reactor**

S-CO₂ Brayton cycle is used for power \succ conversion system

3 MPa

Advantages of S-CO₂ cycle for SMR \geq

15 MPa

HPT

Steam cycle

SG

280 °C

230 °C

16 MPa, 180 °C

High cycle efficiency in moderate temperature ranges (450~750 °C)

LPT

Compact component size with simple layout

G

MP Terbina 52.8 M

TR. 2 C

LP Terbina 52.0 W

1)8,0 C

Power Terbine 138, 9 M

900 C 7.13 MPs

Esterned Heat Eachnag Tastimous The I mouse The Cost at

7.99 Mm

498.9 C

622.6 C 7.69 MPs 125.46s/s

Background

Ideal Gas Brayton Cycle

500 5x10 1×10² 400 Temperature (°C) 20 MPa 3×10² 300 15 MPa 2×10² 200 5 MPa compression region 2.5 MPa 10² 100 0×10⁰ 5×10-4 10-3 10-2 10-1 Specific volume (m³/kg)

S-CO₂ Brayton Cycle is a hybrid of Rankine and Brayton cycles to maximize advantages from both cycles

5

<Simple recuperated S-CO₂ Brayton cycle>

Design of S-CO₂ cycle

- An in-house code KAIST-CCD was used for cycle design. \geq
- Direct cycle for MMR power conversion system \geq
 - Simple recuperated S-CO₂ Brayton cycle
 - Recompressing recuperated S-CO₂ Brayton cycle
- Bottom temperature of cycle (60°C) \succ
 - → Considering air-cooling capability at pre-cooler cold side

Target	
Electric power output	10-12 MWe
Turbine inlet temperature	550.0℃
Compressor inlet temperature	60.0℃
Total Weight	<100ton
Total Width	<8m
Cylindrical diameter	3-4m
Pre-cooler coldside coolant	Air

<Recompressing recuperated S-CO₂ Brayton cycle>

Determine top pressure

- Cycle optimization study was performed
- > Find optimum cycle efficiency vs. pressure ratio
- > Assumed efficiency of turbomachineries
 - Compressor : 85%
 - Turbine : 92%
 - Obtained from balje's non-dimensional number analysis
- Simple recuperated cycle : **33%** at 2.62 P ratio
- Recompressing cycle : 38% at 1.87 P ratio

	Power (MWe)							
i Mi Feature	0.3	1,0	3.0	10	30	100	300	
TM Speed/Size	75,000 / 5 cm	icm 30,000/			10,000 / 40cm		3600 / 1.2 m	
Turbine type	Singl	Single stage			multi stage	multi stago		
Compressor	Single stage	Radia	ľ	mult	ti stage	AXIAI	multi stage	
type			[sir	ngle stage	Axial	multi stage	
Bearings								
	Gas Foil			Hydrodynamic oil				
			Magnetic			Hydrosta	tic	
				_				
Seals	Adviabyrinth							
		Dry lift off						
Freq/alternator	Permanent Magnet			Wound, Synchronous				
	Gearbox, Synchronous							
Shaft	Dual/Multiple							
Configuration		Single Shaft						
, and a second								

ns and ds, are used for estimating efficiency and compressor sizing

$$n_{s} = \frac{\omega\sqrt{V_{1}}}{(gH_{ad})^{\frac{3}{4}}} \qquad d_{s} = \frac{D(gH_{ad})^{\frac{1}{4}}}{\sqrt{V_{1}}}$$

ns : specific speed, ds : specific diameter

- ω : Angular velocity [radian/sec]
- g : Gravitational acceleration [ft/s²]
- *D* : Impeller diameter [ft]
- V_1 : Inlet volumetric flow rate [ft³/s]
- H_{ad} : Adiabatic head [ft]

(1) Design methodology

Ideal gas based correlations cannot be used for S-CO2

 Thus, the static condition should be calculated from the stagnation condition based on the original definition.

(1) Design methodology

Mass conservation + Euler equation

 $\dot{m} = \rho(h_s, P_s) AV$ $h_{02} - h_{01} = U_2 W_{w2} - U_1 W_{w1}$

Velocity profile (Mean stream line analysis)

11

(1) Design methodology

- Loss models included in KAIST_TMD for Radial compressor
 - Enthalpy loss models

Enthalpy loss in compressor

Radial compressor Loss model Proposer Incidence loss Conrad et al. Coppage eet al. Blade loading loss Skin friction loss Jansen **Clearance** loss Jansen **Disk friction loss** Daily and Nece Johnston and Dean Mixing loss **Recirculation** loss Oh et al. Leakage loss Aungier

(2) On design vs. Off design

(3) Code Validation with experiment data Turbomachinery PR-Mdot Map TURBO DESIGN result Measured data on SNL's Report 1.45 Off design performance comparison 1.4 Off design performance provided by Liss Lissance Katio KAIST_TMD compares with experiment rpm=95000 data from SNL research team. 1.25 The trend is different but in reasonable 1.2 agreement 1.15 ~ 0.05 of difference in pressure ratio 1.1 ⊑ 1.5 prediction 2.5 3.5 Mass Flow Rate (kg/s) Overall efficiency is under estimate Turbomachinery Efficiency-Mdot Map TURBO DESIGN result Measured data on SNL's Report 75 75 Efficiency (%) Total to static Efficiency (%) 65 Total to static I 00 Experimental dat .75 clearance pm=5500 55 25 clearance rpm=55000 50 75 clearance 0.50 clearance x 0.25 clearance 2.5 3.5 0.10 clearance 45 ⊾ 1.5 Mass Flow Rate (kg/s) 2.5 3.5 Mass Flow Rate (kg/s)

(4) Results

- Off-design performance employs efficiency and pressure ratio curves.
- Compressor on-design performance achieved 84.2%.
- This is similar to non dimensional number analysis.

Summary & Further works

- In previous studies, the feasibility of passive air cooling system in pre-cooler and cycle layout selection were performed.
- Compressor performance analysis in on design and off design conditions was conducted by KAIST_TMD.
 - It is mean stream line analysis code
 - TMD adopts real gas approach and includes the loss models selected from open literatures..
 - Preliminary validation of TMD was carried out and the results are in reasonable agreement.
- Compressor performance analysis in on design and off design conditions was conducted by KAIST_TMD.
 - It is mean stream line analysis code.
 - Preliminary validation results are in reasonable agreement
- KAIST_TMD doesn't include the diffuser loss. The proper loss model will be applied near the future.
- Additionally, radial turbine code and axial turbomachinery codes will be verified and modified in the future.

