

Transactions of the Korean Nuclear Society Autumn Meeting, Pyeongchang, Korea, October 30-31, 2014

Interfacial Friction Factor Model for Two-dimensional Film Flow

Jin-Hwa Yang^{a,b}, Hyoung-Kyu Cho^b, Dong-Jin Euh^a and Goon-Cherl Park^b

^a Korea Atomic Energy Research Institute

^b Seoul National University

Oct. 31st, 2014

<u>evo03@snu.ac.kr</u>

1. INTRODUCTION

- **2. 2D Film Flow Experiments**
- **3. Momentum Conservation Equations**
- 4. Mechanistic Model for Interfacial Friction Factor
- 5. Conclusions

Introduction

- Trend of thermal hydraulic analysis in nuclear engineering
 - Multi-scale, multi-dimensional, multi-phase, multi-physics ...
 - → HIGH PRECISION ANALYSIS!!
 - Two-phase flow analysis

System Scale

Component Scale

V&V Multi-dimensional modules

- RELAP-5
- MARS
- TRACE
- CATHARE3
- SPACE

ΠυΤ

Computational Multi-Fluid Dynamics

- Neptune-CFD
- STAR-CCM
- CUPID

3

Motivation of this study •••

- To produce benchmark data for multidimensional codes validation.
- To develop constitutive models based on <u>multidimensional local measurements</u>.

Verification & Validation (V&V) of multidimensional codes

4

✓ 1D empirical models have been used.

- Upper downcomer multidimentional two-phase flow
 - ECC(Emergency Core Coolant) bypass occurs during reflood phase of cold-leg LBLOCA
 - 2.1m elevated DVI(Direct Vessel Injection) line in APR1400
 - 2-fluid, 2-D film flow: Vertical liquid flow vs Circumferential vapor flow

Objectives

1. Introduction

2. 2D FILM FLOW EXPERIMENTS

- **3. Momentum Conservation Equations**
- 4. Mechanistic Model for Interfacial Friction Factor
- **5.** Conclusions

2D Film Flow Experiments

Experimental Features

- 1/10 scaled down facility of unfolded downcomer
- Local liquid film velocity & thickness measurement
- Test conditions

	Real conditions	Scaled-down conditions*
Nozzle diameter (m)	0.22	0.022
Water inlet velocity (m/s)	2	0.63
Lateral air velocity (m/s)	15 ~ 45	5 ~ 15

Flow Shape Change with Lateral Air Velocity

Hydrodynamic condition

Inlet air velocity: 5 ~ 15 m/s (real scale 15 ~ 45m/s)

0 m/s

5 m/s

9 m/s

NuTHEL

Experimental Measurement Methods

Liquid Film Velocity Measurement

*

Liquid Film Thickness Measurement

Results of 2D Film Flow Experiments

Results: 9, 11, 13, 15 m/s lateral air injection (1/2)

Results of 2D Film Flow Experiments

Results: 9, 11, 13, 15 m/s lateral air injection (2/2)

14

NuTHEL

1. Introduction

2. 2D Film Flow Experiments

3. MOMENTUM CONSERVATION EQUATIONS

4. Mechanistic Model for Interfacial Friction Factor

5. Conclusions

X-direction force balance

Liquid film
$$\begin{aligned}
-(P_2 - P_1)_x & A_1 + \int_A \tau_{i,x} dA_1 - \int_A \tau_{wf,x} dA_1 \\
&= \sum_{in_x} (\rho_f A_1 U_{f_-face} \times U_n) - \sum_{out_x} (\rho_f A_1 U_{f_-face} \times U_n) \\
-(P_2 - P_1)_x & A_2 - \int_A \tau_{i,x} dA_2 - \int_A \tau_{wg,x} dA_2 \\
&= \sum_{in_x} (\rho_g A_2 U_{g_-face} \times U_n) - \sum_{out_x} (\rho_g A_2 U_{g_-face} \times U_n)
\end{aligned}$$

Y-direction force balance

Liquid film
$$\begin{aligned}
-(P_2 - P_1)_y A_1 - \int_A \tau_{i,y} dA_1 - \int_A \tau_{wf,y} dA_1 + \rho_f gV \\
= \sum_{in_y} (\rho_f A_1 U_{f_j f_{ace}} \times U_n) - \sum_{out_y} (\rho_f A_1 U_{f_j f_{ace}} \times U_n) \\
-(P_2 - P_1)_y A_2 + \int_A \tau_{i,y} dA_2 - \int_A \tau_{wg,y} dA_2 + \rho_g gV \\
= \sum_{in_y} (\rho_g A_2 U_{g_j f_{ace}} \times U_n) - \sum_{out_y} (\rho_g A_2 U_{g_j f_{ace}} \times U_n)
\end{aligned}$$

$$\frac{\int_{A} \tau_{i,x} dA_{1}}{A_{1}} - \frac{\int_{A} \tau_{wf,x} dA_{1}}{A_{1}} + \frac{\int_{A} \tau_{i,x} dA_{2}}{A_{2}} + \frac{\int_{A} \tau_{wg,x} dA_{2}}{A_{2}} = \sum_{in_{-x}} \left(\rho_{f} U_{f_{-face}} \times U_{n} \right) - \sum_{out_{-x}} \left(\rho_{f} U_{f_{-face}} \times U_{n} \right) - \sum_{in_{-x}} \left(\rho_{g} U_{g_{-face}} \times U_{n} \right) + \sum_{out_{-x}} \left(\rho_{g} U_{g_{-face}} \times U_{n} \right) + \sum$$

$$\int_{A} \tau_{i,x} dA = \int_{A} \frac{1}{2} \rho (f_{i,y} u_{f}) - U_{f} | (U_{g} - U_{f}) dA = \int_{A} \frac{1}{2} \rho_{g} f_{i} (u_{g}(x) - u_{f}(x)) \sqrt{(u_{g}(x) - u_{f}(x))^{2} + v_{f}^{2}(y)} dA$$

$$\int_{A} \tau_{wf,x} dA = \int_{A} \frac{1}{2} \rho (f_{wf} u_{f}) (x) \sqrt{u_{f}^{2}(x) + v_{f}^{2}(y)} dA$$
Blasius' equation
$$f_{wg} = 0.79 \, \mathrm{Re}^{-1/4}$$

$$\int_{A} \tau_{i,y} dA = \int_{A} \frac{1}{2} \rho_{g} f_{i} \left| \vec{U}_{g} - \vec{U}_{f} \right| \left(U_{g} - U_{f} \right) dA = \int_{A} \frac{1}{2} \rho_{g} f_{i} v(x) \sqrt{\left(u_{g}(x) - u_{f}(x) \right)^{2} + v_{f}^{2}(y)} dA$$
$$\int_{A} \tau_{wf,y} dA = \int_{A} \frac{1}{2} \rho \left(f_{wf} v_{f}(y) \sqrt{u_{f}^{2}(x) + v_{f}^{2}(y)} dA \right)$$

Assume that...

- $\textcircled{1} \quad \text{Ignore lateral air flow acceleration} \\$
- ② Linear velocity profile
- 3 Constant friction coefficient
- ④ Gas wall friction factor follows Blasius' Eq.

Local Interfacial Friction Factors vs. Previous Studies

L.B. Fore, S.G. Beus, R.C. Bauer, "Interfacial friction in gas-liquid

annular flow: analogies to full and transition roughness",

International Journal of Multiphase Flow, Vol. 26, p 1755-1769, 2000.

Flow Pattern Definition

Flow Pattern Definition

Interfacial Friction Factor in MARS-3D

	Stable	$f_i = 0.0025(1+75)$	$5\alpha_l)$		Wallis		
flow	Unstable	$f_{i} = f_{s} \left\{ 1 + 1400F \left[1 - \exp\left(-\frac{1}{G} \frac{\left(1 + 1400F\right)^{3/2}}{13.2F}\right) \right] \right\}$			Use the larger one between Henstock-Hanratty and 5×Wallis.		
0.1	Current, air-water, 25 mm, + Fore & Bauer, nitrogen-wa △ Fore & Bauer, nitrogen-wa □ Fore & Dukler, air-water, ○ Asali, air-water, 22.9 mm, × Asali, air-water, 42 mm, 1 × Asali, air-water, 42 mm, 2 Wallis (1969) Wallis (1969) with h/D = 0.0015	I atm tter, 5.08 x 101.6 mm, 3.4 atm tter, 5.08 x 101.6 mm, 17 atm 50.8 mm, 1 atm 1 atm atm atm atm atm atm atm atm	Thin film Thick film Entrainment De-entrainment Wallis x 5 Henstock-Hanratty		[•] Unstable : Vertical film flow Higher relative velocity Stable		
1E-3 L 1E-	-3	0.01	23	لبب 0.1		YELLEX	
		h/D	20				

1. Introduction

- 2. 2D Film Flow Experiments
- **3. Momentum Conservation Equations**

4. MECHANISTIC MODEL FOR INTERFACIAL FRICTION FACTOR

5. Conclusions

Mechanistic Model for Interfacial Friction Factor

B: smooth wall single-phase flow constant, 5.5

 κ : Von Karman constant, 0.4

 ΔB : effects of the rough wall; increases with roughness, k_s^+

$$\Delta B = \frac{1}{\kappa} \ln\left(1 + Ck_s^+\right)$$

"Thickness of wavy thin liquid film ~ wall roughness"

$$\operatorname{Re}_{t} = \frac{\rho t u_{avg}}{\mu} = \int_{0}^{t^{+}} u^{+} dy^{+} = \frac{t^{+}}{\kappa} \left(\ln t^{+} + B\kappa - \Delta B\kappa - 1 \right)$$

$$f_i = 2\frac{u^{*2}}{u_{avg}^2} = 2\left(\frac{\rho t u^*}{\mu}\right)^2 \left(\frac{\mu}{\rho t u_{avg}}\right)^2 = 2\frac{t^{*2}}{\operatorname{Re}_t^2} \qquad \text{where} \quad u^* = \sqrt{\tau_i / \rho_g} \qquad \Longrightarrow \qquad \operatorname{Re}_t = \sqrt{\frac{2}{f_i}} t^+$$

R.Kumar and D.P. Edwards, "Interfacial shear modeling in two-phase annular flow", KAPL Atomic Power Laboratory, KAPL-P-000220, 1996.

$$\sqrt{\frac{2}{f_i}} = \frac{1}{\kappa} \left[\ln \left(\frac{t^+}{1 + Ck_s^+} \right) + B\kappa - 1 \right]$$

Comparison with Previous Studies

1. Introduction

- 2. 2D Film Flow Experiments
- **3. Momentum Conservation Equations**
- 4. Mechanistic Model for Interfacial Friction Factor

5. CONCLUSIONS

Summary

- Local 2D liquid film velocity & thickness measurement were carried out.
 - → Validation data for multidimensional codes were produced.
- Interfacial friction factors were calculated by 2D momentum conservation equations.
- Mechanistic interfacial friction factor model was developed

based on law of wall and thin film roughness concept.

Stable film flow (thin film, thick film w/o entrainment)	$f_i = \frac{1}{4} \left[1.879 - 22.104 \left(\frac{h}{D} - 0.0015 \right) \right]^{-2} - 0.066$
Unstable film flow (entrainment, de-entrainment)	$f_i = \frac{1}{4} \left[1.879 - 32.928 \left(\frac{h}{D} - 0.0015 \right) \right]^{-2} - 0.046$

Further work

- ✓ Film thickness measurement error in entrainment & de-entrainment region
- Lateral air velocity acceleration
- ✓ Gas wall friction
- Transition criterion between stable/unstable film

APPENDIX

- **1. Experimental methods**
- 2. Mass and Momentum Conservation
- **3. Uncertainty Analysis**
- 4. Challenges

EXPERIMENTAL METHODS

Application of Volume-PIV Method

Volume-averaged PIV measurement method

- Continuous wave lasers: 532 nm laser(green) / 10W + 5W
- High speed camera (PHANTOM v211)
- Add fluorescent particles (1~20 μm).

: luminous particles in range of 570 nm wavelength reflecting 532 nm laser source.

Use a long-pass filter which cuts off image information under 560 nm wavelength.

Set-up of volume-PIV method

Original image

Filtered image

Limitation of Sheet-PIV Method

Why the sheet-PIV is not appropriate method to measure liquid film velocity... **

- Geometry
 - Laser sheet cannot help being injected along to the vertical direction.
- Optics
 - Laser is scattered by the oscillating film boundary.
 - Attenuation of laser intensity doesn't maintain illumination.

Liquid Film Thickness Measurement

Ultrasonic velocity gauge

Signal frequency: 50Mhz / Sample rate: 20Hz (200samples per 10seconds)

MASS CONSERVATION

2D Film Flow Experiments

Results: 0, 5, 7 m/s lateral air injection

Results of 2D Film Flow Experiments

Results: 9, 11, 13, 15 m/s lateral air injection (1/2)

Results of 2D Film Flow Experiments

Results: 9, 11, 13, 15 m/s lateral air injection (2/2)

Mass Conservation

Mass conservation[error=(M_in-M_out)/M_in]								
Lateral air velocity		0	5	7	9	11	13	15
Line	M_out	0.00024	0.00025	0.00021	0.00014	0.00011	0.00011	0.00009
	error	0.0017	0.0522	0.1370	0.3985	0.5305	0.5502	0.6212
	%	0.17	5.22	13.70	39.85	53.05	55.02	62.12
					middle			
					0.00018			
					0.2482			
					24.82			
					lower			
					0.00018			
					0.2441			
					24.41			
Cell	Max.	0.122	0.122	0.198	0.195	0.244	0.274	0.216
	Min.	0.002	0.001	0.002	0.003	0.002	0.000	0.002
	Avg.	0.040	0.048	0.049	0.084	0.091	0.070	0.060
	Stdv.	0.032	0.036	0.053	0.049	0.067	0.056	0.050

UNCERTAINTY ANALYSIS

Validation Experiment

Validation Experiment

Results

Sheet-PIV along to depth direction

Volume-PIV along to width direction

Uncertainty Analysis of Particle Image Velocimetry

- Recommended UA procedure was developed by Nishio et al. at 1999.
- Uncertainty of flow speed can be defined by <u>image displacement</u>, <u>time interval</u> and <u>magnification factor</u>.
- <u>Experimental errors</u> should be considered as uncertainty parameters.

General Guidelines

Summary of Uncertainties

parameter	Category	Error sources	u(x _i)	unit	c _i (unit)	unit	c _i u(x _i)	u _c
α(mm/pix)	Calibration	Reference image	0.7	pix	1.29E-05	mm/pix ²	9.01E-06	
		Physical distance	0.02	mm	1.60E-03	1/pix	3.21E-05	
		Image distortion by lens	3.12	pix	1.29E-05	mm/pix ²	4.01E-05	
		Image distortion by CCD	0.0056	pix	1.29E-05	mm/pix ²	7.21E-08	
		Board position	0.5	mm	1.51E-05	1/pix	7.55E-06	
		Parallel board	0.035	rad	2.81E-04	mm/pix	9.84E-06	5.37E-05
ΔX(pix)	Acquisition	Particle image distortion	0.000002	mm	1.25E+02	pix/mm	2.49E-04	
		Image distortion by CCD	0.0056	pix	1.29E-05		7.21E-08	
		Normal view angle	0.035	rad	2.81E-04	mm/pix	9.84E-06	
	Reduction	Mis-matching error	0.2	pix	1.00E+00		0.20	
		Sub-pixel analysis	0.03	pix	1.00E+00		0.03	0.20
Δt(s)	Acquisition	Pulse timing accuracy	4.00E-08	S	1.00E+00		4.00E-08	4.00E-08
δu(mm/s)	Experiment	Particle trajectory	0.1	mm/s	1.00E+00		0.1	
		3-D effects	1.10E-03	mm/s	1.00E+00		0.0011	0.10
parameter		Error sources	u(x _i)	unit	c _i (unit)	unit	c _i u(x _i)	u _c
α	Magnification	factor	5.363E-05	mm/pix	158461.1	pix/s	8.4982082	
ΔΧ	Image displace	ement	0.20223764	pix	17.644	mm/pix/s	3.5682809	
Δt	Image interva	l	4.005E-08	S	2795887.6	mm/s²	0.1119752	
δυ	Experiment		0.10000605	mm/s	1		0.100006	9.22

- ✓ Averaged velocity: 1.14 m/s
- ✓ Systematic error: 9.22 x 10⁻³ m/s (0.81%)

Uncertainty Analysis

Uncertainty quantification

Sheet-PIV along to depth direction

Averaged standard deviation

 $2\overline{\sigma}_{1} = \frac{\sigma_{RSS}}{n} = 0.014 \,\text{m/s}(1.23\%)$

$$B = (\overline{V_1} + 2\overline{\sigma_1}) - \overline{V_2} = 0.063 \text{ m/s} (5.53\%)$$

where $\overline{V_1}$: average velocity by sheet PIV $\overline{V_2}$: average velocity by volume PIV $\overline{\sigma_1}$: avraged standard deviation of sheet PIV

Averaged velocity = 1.09 ± 0.06 m/s

CHALLENGES

1. Geometry: Cylindrical vs. parallel plates

- 1/10 scale down can bring hydraulic distortion about interaction between two-phase flow.
- Experimental technique(volume-averaged PIV) has limitation to be applied to curved geometry.

2. Scaling: 1/10 scaled down experimental condition

- 1/5 scale experiments will be carried out.
- Other results of previous 1/5 scaled experiments (MIDAS and DIVA) will be validated.

3. Fluid: Steam vs. air

- Steam blocks our view on liquid flow.
- <u>Previous studies on steam & saturated water flow shows similar range of interfacial friction factor.</u>

Steam-water interfacial friction factor

H. J. KIM, Chang, S. C. LEE, S. G. BANKOFF, 1985. "HEAT TRANSFER AND INTERFACIAL DRAG IN COUNTERCURRENT STEAM-WATER STRATIFIED FLOW". International Journal of Multiphase Flow, Vol. 11, pp. 593-606.

4. Other modeling parameter (1/2)

- Re number, pressure, etc...
- Interfacial friction factor increase with Re number increases.

Interfacial friction factor with Re

조형규, 윤병조, 어동진, 권태순, 2005. "LBLOCA 재관수 기간 동안 DVI 방식 원자로에서 발생하는 다차원 안전주입수 우회 현상에 대 한 실험 및 이론 연구". KAERI/TR-2937/2005.

4. Other modeling parameter (2/2)

- Re number, pressure, hydraulic diameter etc...
- <u>Results of high pressure experiments has good agreement with Wallis model.</u>

Pressure effect ??

51

X-direction force balance

$$\begin{aligned} \text{Liquid film} \qquad & -\left(P_{2}-P_{1}\right)_{x}\delta_{1}H + \int_{A}\tau_{i,x}dA - \int_{A}\tau_{wf,x}dA = -\rho_{f}\left(\frac{u_{f_{-}e} + u_{f_{-}0}}{2}\right)\delta_{1}H \times \left(\frac{u_{f_{-}e} + u_{f_{-}0}}{2}\right) + \rho_{f}\left(\frac{u_{f_{-}0} + u_{f_{-}w}}{2}\right)\delta_{1}H \times \left(\frac{u_{f_{-}0} + u_{f_{-}w}}{2}\right) \\ & -\rho_{f}\left(\frac{u_{f_{-}n} + u_{f_{-}0}}{2}\right)\delta_{1}W \times \left(\frac{v_{f_{-}n} + v_{f_{-}0}}{2}\right) + \rho_{f}\left(\frac{u_{f_{-}0} + u_{f_{-}s}}{2}\right)\delta_{1}W \times \left(\frac{v_{f_{-}0} + v_{f_{-}s}}{2}\right) \\ \text{Air} \qquad & -\left(P_{2}-P_{1}\right)_{x}\delta_{2}H - \int_{A}\tau_{i,x}dA - \int_{A}\tau_{wg,x}dA = -\rho_{g}\left(\frac{u_{g_{-}e} + u_{g_{-}0}}{2}\right)\delta_{2}H \times \left(\frac{u_{g_{-}e} + u_{g_{-}0}}{2}\right) + \rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}w}}{2}\right)\delta_{2}H \times \left(\frac{u_{g_{-}0} + u_{g_{-}w}}{2}\right) \\ & -\rho_{g}\left(\frac{u_{g_{-}n} + u_{g_{-}0}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}n} + v_{g_{-}0}}{2}\right) + \rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & -\rho_{g}\left(\frac{u_{g_{-}n} + u_{g_{-}0}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}n} + v_{g_{-}0}}{2}\right) + \rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & -\rho_{g}\left(\frac{u_{g_{-}n} + u_{g_{-}0}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}n} + v_{g_{-}0}}{2}\right) + \rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & -\rho_{g}\left(\frac{u_{g_{-}n} + u_{g_{-}0}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}n} + v_{g_{-}0}}{2}\right) + \rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_{-}0} + u_{g_{-}s}}{2}\right)\delta_{2}W \times \left(\frac{v_{g_{-}0} + v_{g_{-}s}}{2}\right) \\ & +\rho_{g}\left(\frac{u_{g_$$

$$= -\left(P_{2}-P_{1}\right)_{x} + \frac{\int_{A}\tau_{i,x}dA}{\delta_{1}H} - \frac{\int_{A}\tau_{wf,x}dA}{\delta_{1}H} = -\rho_{f}\left(\frac{u_{f-e}+u_{f-0}}{2}\right)^{2} + \rho_{f}\left(\frac{u_{f-0}+u_{f-w}}{2}\right)^{2} - \rho_{f}\left(\frac{u_{f-n}+u_{f-0}}{2}\right)\frac{W}{H} \times \left(\frac{v_{f-n}+v_{f-0}}{2}\right) + \rho_{f}\left(\frac{u_{f-0}+u_{f-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{f-0}+v_{f-s}}{2}\right) + \rho_{f}\left(\frac{u_{f-0}+u_{f-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{f-0}+v_{f-s}}{2}\right) + \rho_{f}\left(\frac{u_{g-0}+u_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-n}+v_{g-0}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{f-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{f-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{f-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{f-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+u_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right)\frac{W}{H} \times \left(\frac{v_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g-s}}{2}\right) + \rho_{g}\left(\frac{u_{g-0}+v_{g$$

Y-direction force balance

$$\begin{split} \text{Liquid film} \qquad \hline (P_2 - P_1)_s \delta_1 W - \int_A \tau_{i,j} dA - \int_A \tau_{w,j} dA + \rho_f g \delta_1 H W = -\rho_f \left(\frac{v_{f,u} + v_{f,u}}{2} \right) \delta_1 W \times \left(\frac{v_{f,u} + v_{f,u}}{2} \right) + \rho_f \left(\frac{v_{f,u} + v_{f,u}}{2} \right) \delta_1 W \times \left(\frac{v_{f,u} + v_{f,u}}{2} \right) \\ -\rho_f \left(\frac{v_{f,u} + v_{f,u}}{2} \right) \delta_1 H \times \left(\frac{u_{f,u} + v_{f,u}}{2} \right) + \rho_f \left(\frac{v_{f,u} + v_{f,u}}{2} \right) \delta_1 H \times \left(\frac{u_{f,u} + v_{f,u}}{2} \right) \\ \text{Air} \qquad \hline (P_2 - P_1)_s \delta_2 W + \int_A \tau_{i,j} dA - \int_A \tau_{w,j} dA + \rho_g g \delta_2 H W = -\rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 W \times \left(\frac{v_{g,u} + v_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 W \times \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \\ -\rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 W \times \left(\frac{v_{g,u} + v_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 W \times \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \\ -\rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 H \times \left(\frac{u_{g,u} + v_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 H \times \left(\frac{u_{g,u} + v_{g,u}}{2} \right) \\ -\rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 H \times \left(\frac{u_{g,u} + v_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 H \times \left(\frac{u_{g,u} + u_{g,u}}{2} \right) \\ -\rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 H \times \left(\frac{u_{g,u} + v_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) \delta_2 H \times \left(\frac{u_{g,u} + u_{g,u}}{2} \right) \\ - \left(-(P_2 - P_1)_y - \frac{\int_A \tau_{i,j} dA}{\delta_1 W} + \rho_g g H = -\rho_f \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 + \rho_f \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 - \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) H \times \left(\frac{u_{g,u} + u_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) H \\ - \left(-(P_2 - P_1)_y + \frac{\int_A \tau_{i,j} dA}{\delta_1 W} - \int_A \tau_{i,j} dA + \rho_g g H = -\rho_f \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 + \rho_f \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 - \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) H \\ + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{\delta_1 W} - \frac{\int_A \tau_{i,j} dA - \int_A \tau_{i,j} dA + \rho_g g H - \rho_g g H - \rho_g g H + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 - \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) H \\ + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 - \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right)^2 + \rho_g \left(\frac{v_{g,u} + v_{g,u}}{2} \right) + \rho_g \left(\frac{v_{g,u} +$$

$$\frac{\int_{A} \tau_{i,x} dA}{\delta_{1}H} - \frac{\int_{A} \tau_{wf,x} dA}{\delta_{1}H} + \frac{\int_{A} \tau_{wg,x} dA}{\delta_{2}H} = -\rho_{f} \left(\frac{u_{f_{-e}} + u_{f_{-0}}}{2} \right)^{2} + \rho_{f} \left(\frac{u_{f_{-0}} + u_{f_{-w}}}{2} \right)^{2} - \rho_{f} \left(\frac{u_{f_{-n}} + u_{f_{-0}}}{2} \right) \frac{W}{H} \times \left(\frac{v_{f_{-n}} + v_{f_{-0}}}{2} \right) + \rho_{f} \left(\frac{u_{f_{-0}} + u_{f_{-s}}}{2} \right) \frac{W}{H} \times \left(\frac{v_{f_{-n}} + v_{f_{-0}}}{2} \right) \frac{W}{H} \times \left(\frac{v_{g_{-n}} + v_{g_{-n}}}{2} \right) \frac{W}{H} \times \left(\frac{v_{g_{$$

$$-\frac{\int_{A} \tau_{i,y} dA}{\delta_{1} W} - \frac{\int_{A} \tau_{wf,y} dA}{\delta_{2} W} - \frac{\int_{A} \tau_{i,y} dA}{\delta_{2} W} + \rho_{f} gH - \rho_{g} gH = -\rho_{f} \left(\frac{v_{f_{-}n} + v_{f_{-}0}}{2}\right)^{2} + \rho_{f} \left(\frac{v_{f_{-}0} + v_{f_{-}s}}{2}\right)^{2} - \rho_{f} \left(\frac{v_{f_{-}e} + v_{f_{-}0}}{2}\right) \frac{H}{W} \times \left(\frac{u_{f_{-}e} + u_{f_{-}0}}{2}\right) + \rho_{f} \left(\frac{v_{f_{-}0} + v_{f_{-}w}}{2}\right) \frac{H}{W} \times \left(\frac{u_{f_{-}0} + v_{f_{-}w}}{2}\right) \frac{H}{W} \times \left(\frac{u_{g_{-}e} + u_{g_{-}0}}{2}\right) \frac{H}{W} \times \left(\frac{u_{g_{-}0} + u_{g_{-}w}}{2}\right) \frac{H}{W} \times \left(\frac{u_{g_{-}0} + u_{g_{-}w$$

$$\int_{A} \tau_{i,x} dA = \int_{A} \frac{1}{2} \rho (f_{i} U_{g} - U_{f}) | (U_{g} - U_{f}) dA = \int_{A} \frac{1}{2} \rho_{g} f_{i} (u_{g}(x) - u_{f}(x)) \sqrt{(u_{g}(x) - u_{f}(x))^{2} + v_{f}^{2}(y)} dA$$

$$\int_{A} \tau_{wf,x} dA = \int_{A} \frac{1}{2} \rho (f_{wf} u_{f}(x) \sqrt{u_{f}^{2}(x) + v_{f}^{2}(y)} dA$$
Blasius' equation
$$f_{wg} = 0.79 \operatorname{Re}^{-1/4}$$

$$\int_{A} \tau_{i,y} dA = \int_{A} \frac{1}{2} \rho_{g} f_{i} \left| \vec{U}_{g} - \vec{U}_{f} \right| \left(U_{g} - U_{f} \right) dA = \int_{A} \frac{1}{2} A_{g} f_{i} v(x) \sqrt{\left(u_{g}(x) - u_{f}(x) \right)^{2} + v_{f}^{2}(y)} dA$$

 $\int_{A} \tau_{wf,y} dA = \int_{A} \frac{1}{2} \rho(f_{wf}) f(y) \sqrt{u_{f}^{2}(x) + v_{f}^{2}(y)} dA$

Assume that...

- 1 Ignore lateral air flow acceleration
- (2) Linear velocity profile
- ③ Constant friction coefficient
- ④ Gas wall friction factor follows Blasius' Eq.

$$\begin{array}{c} \blacksquare \\ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} f_i \\ f_w \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Comparison with Previous Studies

