Studies of S-CO₂ Power Plant Pipe Design for Small Modular Sodium-cooled Fast Reactor

Transactions of Korean Nuclear Society Autumn Meeting, 2014

Min Seok, Kim

M.S. Candidate. Dept. of Nuclear & Quantum Engineering, KAIST <u>minskim@kaist.ac.kr</u> +82-42-350-5869

CONTENTS

Introduction

- (1) S-CO₂ cycle background
- (2) Advantages of S-CO₂ cycle
- (3) Sodium Fast Reactor(SFR)
- (4) SFR Applicability

Ι

Π

Ш

S-CO₂ Power Plant Pipe Design for Small Modular SFR

- (1) Importance of pipe design
- (2) Characteristic of S-CO₂ about pipe design
- (3) S-CO₂ Brayton cycle layout and properties
- (4) Determination of pipe diameter and thickness
- (5) Design to compensate for thermal expansion

Conclusion

- (1) Summary
- (2) Further works

(1) S-CO₂ Cycle Background

Specific Volume

S-CO₂ Cycle is a hybrid of Rankine and Brayton cycles to maximize advantages from both cycles

(2) Advantages of S-CO₂ Cycle

Compact Turbomachinery & Heat exchanger

- Compact Turbomachinery
 - Operating minimum pressure and density is higher than the steam Rankine cycle
- High pressure operating Compact Heat exchanger
 Wide operational range with high surface to volume ratio

High efficiency

- ✤ Moderate turbine inlet temperature (450 ~ 750°C)
- Small compressing work near the critical point
- Better operational range and efficiency

(3) Sodium Fast Reactor (SFR)

- SFR coupled to S-CO₂ cycle can substitute violent sodium-water reaction with milder sodium-CO₂ reaction which enhances safety.
- S-CO₂ cycle can achieve higher efficiency than water Rankine cyle.
- Due to its compactness and modularization, operation and maintenance are more flexible and easy.
- US, France, Japan and Korea are doing research over this application.

(4) SFR Applicability

Improved Safety

Sodium-Water Reaction (SWR)

Before interaction

□ Sodium-CO₂ interaction

After interaction

 $T_{Na} = 400^{\circ}C$

Na-CO₂

T_{Na} = 450 °C

Na-CO₂

Surface degradation : 1.7~2.4 mm (Nominal thkness : 3.5 mm)

Before

After interaction

(4) SFR Applicability

Improved Economy

(1) Importance of Pipe Design

- Many studies focused on main system components.
- Compressor, turbine, and heat exchanger

- The cost of piping and piping related equipment approximately accounted for 7-8% of the total construction cost.
- Most of the leakage occurred in a pipe.
- Footprint is determined by pipe arrangement.

*Reference: Supercritical CO2 Advanced Brayton Cycle Design, Mechanical and Aerospace Engineering, Carleton University

(2) Characteristic of S-CO₂ about pipe design

		[· · ·				
Section Condition $T(^{\circ}C) = P(MP_{2})$				ρ (kg/m3)		$\mu(\text{Pa-s})[\times 10^{-5}]$				
Section Condition	I (C)	I (WII a)	Water	S-CO2	Air	Water	S-CO2	Air		
① Turbine Inlet	505.00	19.78	49.1	106.9	68.6	4	4	4		
② HT Recuperator HS Inlet	396.68	7.88	22.5	51.5	33.3	3	4	4		
③ LT Recuperator HS Inlet	164.00	7.73	908.8	105.2	60.9	17	2	3		
④ LT Recuperator HS Outlet	65.19	7.58	981.7	166.7	78.0	41	2	2		
(5) Precooler Inlet	65.19	7.58	982.2	166.9	78.0	41	2	2		
6 MC Inlet	31.25	7.50	998.4	598.8	88.4	76	4	2		
⑦ LT Recuperator CS Inlet	61.28	20.00	991.7	722.6	198.2	47	6	2		
⑧ LT Recuperator CS Outlet	151.24	19.93	920.4	312.5	149.2	18	3	3		
③ RC Inlet	65.19	7.58	981.7	166.9	78.0	41	2	2		
① RC Outlet	153.42	19.93	925.9	322.3	151.3	18	3	3		
1 HT Recuperator CS Inlet	152.03	19.93	920.4	312.6	149.2	18	3	3		
12 IHX Inlet	351.21	19.85	69.6	134.9	84.5	3	4	4		
		<i>.</i> ,						8 🐼 N		

(3) Layout and Properties of S-CO₂ Brayton Cycle

Fig. 1 S-CO₂ recompressing cycle layout

> Primary system specification:

IHX hotside outlet Pressure	0.110MPa
IHX hotside outlet Temp.	525°C
IHX hotside mass flow rate	1017.03kg/s

Cycle design variables and specification:

Recompressing cyo	Net output	75.0MW	
Maximum pressure	20MPa	HTR hot side pressure drop	150kPa
Turbine inlet temp.	505℃	HTR cold side pressure drop	75kPa
Turbine efficiency	92%	LTR hot side pressure drop	150kPa
Main and Re-compressor efficiency	88/90%	LTR cold side pressure drop	75kPa
Recompressing fraction	36%	Precooler CO2 pressure drop	75kPa
Recuperator effectiveness	95%	IHX CO2 pressure drop	75kPa
CO2 mass flow rate	912.75kg/s	Cycle thermal efficiency	43.55%

• Reducing the waste heat and increasing the recuperated heat to increase the η_{th} .

(4) Determination of Pipe Diameter and Thickness for S-CO₂ Cycle

Flow Velocity

$$V = f_{pv} / \rho^{0.3}$$

by Ronald W. Capps(Chem. Eng. 1995.6)

V : optimal flow velocity [m/s] $f_{pv} : pipe velocity factor [m(\frac{kg}{m^3})^{0.3}/s]$ $\rho : density of flow [\frac{kg}{m^3}]$

PIPE VELOCITY FACTORS							
Motive Energy Source m (kg/m ³) ^{0.3}							
Centrifugal Pump, Blower	14						
Compressor Pipe dia<6in. Pipe dia>6in.	24 29						
Steam Boiler	63 ~ 68						

(4) Determination of Pipe Diameter and Thickness for S-CO₂ Cycle

The procedure to comply with the ASME standard is as follows:

① After obtaining the average diameter by optimal velocity, calculate the minimum required thickness.

② Set the outside diameter and thickness in accordance with the ASME standard by selecting the proper material.

③ In the case that the flow velocity is more than the optimal velocity, select larger outside diameter pipe and check whether it is on the ASME standard.

(4) If there isn't standard thickness which is suitable for designed diameter or diameter is too large compared to the system, find the proper minimum required thickness by reducing the diameter lying down under pressure drop.

(5) after 1-4 process, re-examine whether the thickness is longer than the revised minimum required thickness.

Minimum thickness

$$t_m = \frac{PD_0}{2(SE + Py)} + A$$

t_m: minimum required wall thickness [m],
Do: outside diameter of pipe [m],
E: weld joint efficiency,
A: additional thickness [m]

P: internal design pressure [Pa] S: maximum allowable stress [Pa] Y: coefficient

	Table 1	Dimensions	and Weig	tts of Welded a	nd Seamle	ess Wroug	ht Steel Pi	pe (Cont'd)	
	C	Customary Unit	5	Identification				SI Units	
NPS [Note (1)]	Outside Diameter, in.	Wall Thickness, in.	Plain End Weight, lb/ft	Extra-Strong (XS), or Double Extra Strong (XXS)]	Schedule No.	DN [Note (2)]	Outside Diameter, mm	Wall Thickness, mm	Plain End Mass, kg/m
32	32.000	0.750	250.55			800	813	19.05	373.00
32	32.000	0.812	270.72			800	813	20.62	402.94
32	32.000	0.875	291.14			800	813	22.23	433.52
32	32.000	0.938	311.47			800	813	23.83	463.78
32	32.000	1.000	331.39			800	813	25.40	493.35
32	32.000	1.062	351.23			800	813	26.97	522.80
32	32.000	1.125	371.31			800	813	28.58	552.88
32	32.000	1.188	391.30			800	813	30.18	582.64
32	32.000	1.250	410.90			800	813	31.75	611.72
34	34.000	0.250	90.20			850	864	6.35	134.31
34	34.000	0.281	101.29			850	864	7.14	150.88
34	34.000	0.312	112.36		10	850	864	7.92	167.21
34	34.000	0.344	123.77			850	864	8.74	184.34

(4) Determination of Pipe Diameter and Thickness for S-CO₂ Cycle

S.C.	Nominal Pip e Size	External Diameter(m)	Internal Diameter(m)	Schedule No.	Thickness(m) Ma	terial ty	pe												
1	24	0.610	0.553	60	0.02858	8														
2	28	0.711	0.679	30	0.01588	8 Nickel Alloys,	and High N06625,	Nickel B 444												
3	28	0.711	0.682	20	0.0142	7														
4	28	0.711	0.676	30	0.01748	8														
5	28	0.711	0.676							ASI	ME B3	1.1-201	10							
6	24	0.610	0.578																	
7	22	0.559	0.502				т	ahle	۵-4	Nick	el an	d Hia	h Ni	ckel A	llovs					
8	24	0.610	0.556		Maximum All	owable St	tress Va	aluesi	n Tensi	ion. ks	i. for M	Aetal T	empera	ature. °F	F. Not Ex	cceeding				
9	28	0.711	0.676	20						,	,				,				UNS	
10	24	0.610	0.556	to 100 200	300 400 5	600 600	650	700	750	800	850	900	950	1.000	1.050	1.100	1.150	1.200	Alloy No.	Spec. No.
(1)	24	0.610	0.556											-,	-,	-,	-,			
12	28	0.610	0.556															Seamle	ess Pipe a	nd Tub
				26.7 24.9 2 34.3 34.3 3	23.6 22.6 2 34.3 33.6 3	1.8 21.1 2.9 32.4	20.8 32.1	20.6 31.8	20.3 31.5	20.1 31.2	20.0 30.9	19.8 30.6	19.7 30.3	19.5 29.9	19.4 29.5	19.4 29.0	19.3 <i>21.0</i>	19.3 <i>13.2</i>	N06625 N06625	B 444
				28.6 26.7 2 28.6 28.6 2	24.6 22.9 2 28.2 27.2 2	1.5 20.4 6.5 26.0	20.0 25.8	19.6 25.6	19.3 25.4	19.0 25.3									N06022 N06022	B 622
				27.3 24.9	23.0 21.3 1	9.9 18.8	18.2	17.8	17.4	17.1	16.9	16.7	16.6	16.5					N10276	

27.3 27.3 27.3 27.3 26.9 25.2 24.6 24.0 23.5 23.1 22.8 22.6 22.4

24.9 23.2 21.3 19.8 18.3 17.3 17.0 16.9 16.9 16.9

24.9 24.9 23.9 23.0 22.1 21.4 21.1 20.8 20.4 20.1

26.9 24.1 21.5 19.7 18.7 18.0 17.7 17.5 17.4

26.9 26.9 26.2 24.8 23.7 22.8 22.4 22.0 21.6

28.6 25.6 23.1 21.3 20.1 19.3 18.9 18.7 18.4 18.2 18.0 17.8 17.6 17.5

28.6 28.0 27.1 26.4 26.0 25.6 25.2 24.9 24.6 24.3 24.1 23.8

The optimal figures in accordance with the ASME standard

28.6

N10276

R30556

R30556

N08925

N08925

N08926

N08926

B 677

22.3

23.6

. . .

.

... ...

. . .

. . .

. . .

17.3

23.3

. . .

17.1

21.2

16.9

17.0

. . .

13.6

13.6

. . .

(4) Determination of Pipe Diameter and Thickness for S-CO₂ Cycle

Pressure drop

$$\Delta p = f \cdot \frac{L}{D} \cdot \frac{\rho V^2}{2}$$

Δp : pressure drop[Pa]
L: length of pipe[m]
ρ : density of flow[kg/m^3]

f: friction factor D: internal diameter of pipe[m] V: optimal flow velocity[m/s]

Friction Factor

$$\frac{1}{\sqrt{f}} = -1.8 \log\left[\left(\frac{\epsilon/D}{3.7}\right)^{1.11} + \frac{6.9}{Re}\right]$$

 ϵ : roughness

Re: Reynolds number of flow

Minor losses

$$\Delta p = K_L \cdot \frac{L}{D} \cdot \frac{\rho V^2}{2}$$

 K_L : loss coefficient

[0.3(90°C), 0.2(45°C)]

(4) Determination of Pipe Diameter and Thickness for S-CO₂ Cycle

> The optimal figures and pressure drop

S.C.	Nominal Pipe Size	External Diameter(m)	Internal Diameter(m)	Schedule No.	Thickness(m)	Length (m)	Pressure drop (kPa)	HX Pressure drop (kPa)
1	24	0.610	0.553	60	0.02858	0.7	39.27	75
2	28	0.711	0.679	30	0.01588	1	25.67	-
3	28	0.711	0.682	20	0.01427	4	48.47	150
4	28	0.711	0.676	30	0.01748	0.7	11.91	150
(5)	28	0.711	0.676	30	0.01748	1	5.61	-
6	24	0.610	0.578	30	0.01588	0.5	0.85	75
(7)	22	0.559	0.502	80	0.02858	1	3.25	-
8	24	0.610	0.556	60	0.02697	4	17.52	75
9	28	0.711	0.676	30	0.01748	2	2.70	-
(10)	24	0.610	0.556	60	0.02697	1.5	2.46	-
(11)	24	0.610	0.556	60	0.02697	0.5	4.82	-
(12)	28	0.610	0.556	60	0.02697	2.7	82.44	75
		244.97	600					

> Thermal efficiency

43.55% (75.0MWe) → 43.07% (74.2MWe)

(5) Design to compensate for thermal expansion

> The types of expansion joint

1. Hard U-shape loop, 2. flexible loop, 3. bend, 4. bellows and 5. sliding

(5) Design to compensate for thermal expansion

Sizing the Recompressing Cycle

Turbo-machinery design

Main Compressor		Turbine				
Rotating Speed	7200rpm	Rotating Speed	7200rpm			
Diameter	0.722m	Diameter	1.287m			
Length	1.082m	Length	1.931m			
Efficiency	88%	Efficiency	92%			

Re compressor								
1 st s	tage	2 nd stage						
Rotating Speed	7200rpm	Rotating Speed	7200rpm					
Diameter	0.908m	Diameter	0.789m					
Length	1.361m	Length	1.184m					
Effic	iency	90%						

(5) Design to compensate for thermal expansion

Sizing the Recompressing Cycle

- Heat Exchanger design
 - Channel D = 1.8mm, 1:1 Laminated structure

IHX							
Length	3.00m						
Volume	$0.881m^3$						
Hot side dP	110kPa						
Cold side dP	75kPa						
Pumping power	225.9kW						

High Temperature Recuperator							
Length	4.79m						
Volume	$8.165m^3$						
Hot side dP	149kPa						
Cold side dP	52kPa						
Effectiveness	95.0%						

Low Temperature Recuperator	
Length	4.69m
Volume	$15.31m^3$
Hot side dP	148kPa
Cold side dP	18kPa
Effectiveness	95.0%

Precooler	
Length	2.271m
Volume	$1.542m^3$
Hot side dP	75kPa
Cold side dP	222kPa
Pumping power	441.9kW

(5) Design to compensate for thermal expansion

- Sizing the Recompressing Cycle
 - Whole layout

(5) Design to compensate for thermal expansion

- Sizing the Recompressing Cycle
 - Whole layout

(100MWe) S-CO2 Brayton Cycle Power Converter, Argonne National Laboratory Argonne, Illinois USA

III. Conclusion

(1) Summary

Advantages of S-CO₂ cycle

- Prevention of SWR
- Relatively high efficiency (450 ~ 750°C)
- Physically compact size

Importance of pipe design

- S-CO₂ power plant pipe design is more complex than existing power plant
 - high temperature, pressure condition and high mass flow rate
- Re-confirm the compactness and simplicity of the S-CO₂ cycle
- Conduct realistic and safe pipe design by considering thermal expansion

Cycle efficiency applying pipe pressure drop

Still higher than existing steam Rankine cycle

III. Conclusion

(2) Further works

- Additional study for a larger system such as 300MW class system in MIT report
 - When the S-CO₂ system becomes large, the pipe diameter may exceed the current ASME standard.
 - ✤ More innovative approach will be needed for the S-CO₂ pipe design.
- Conduct the process engineering considering capital cost, operating cost and life-cycle cost
 - To economically design the pipe of S-CO₂ cycle, optimal flow velocity is needed.
 - To support process engineering, theoretical calculation and empirical experiment are needed.

THANK YOU

