An Experiment of Robust Algorithm for the Eigenvalue problem of a Multigroup Neutron Diffusion based on modified FETI-DP - Part 2

KNS automn meeting

$$
\begin{gathered}
\text { 2014.10.30~31 } \\
\text { Yongpyong }
\end{gathered}
$$

Jonghwa Chang

Korea Atomic Energy
Research Institute

Back ground

- Detailed core modeling requires huge number of unknowns. There is memory size problem as well as long computing time.
- Utilization of cheap parallel processing capability to speed up CPU intensive calculation.
- Modified FETI-DP was successfully applied to Eigenvalue problem of the Neutron Multigroup Diffusion equation.
- Update from last presentation (2014 KNS spring mtg)
- 3D partitioning implemented for arbitrary number of CPUs.
- Solution of multigroup source problem for each sub-domain are now using a Krylov method (PGMRES) for faster convergence and little dependency on SOR weight parameter.
- Experiment on varying no. of CPUs and turn-around time.

Domain Decomposition

Conventional approach

- guess flux [or current) at Interface
- solve subdomain equation
- find current [or flux]
- adjust flux [or current]
- repeat until convergence

FETI approach

- setup global equation
- solve subdomain equation
- find l.h.s. of global equation
- repeat until convergence

Dual Primal Finite Element Tearing and Interconnection

Linear system

$\mathbf{K u}=\mathbf{f}$
Subdomain problem

$$
\left[\begin{array}{cc}
K_{i i}^{s} & K_{i b}^{s} \\
K_{b i} & K_{b b}^{s}
\end{array}\right]\left[\begin{array}{c}
u_{i}^{s} \\
u_{b}^{s}
\end{array}\right]=\left[\begin{array}{c}
f_{i}^{s} \\
f_{b}^{s}
\end{array}\right]
$$

Continuity condition at interface

$$
\begin{aligned}
& u_{b}^{s}-u_{b}^{q}=0 \text { on } \partial \Omega^{s} \cap \partial \Omega^{q} \\
& \qquad \sum_{s=1} B^{s} u^{s}=0 \quad B^{s} u^{s}= \pm u_{b}^{s}
\end{aligned}
$$

Ref) C. Farhat et. al, Numer.Linear Algebra Appl. 2000; 7:687-714

Interface condition

$$
B_{r}^{s} u_{r}^{s}= \pm u_{b_{r}}^{s} \quad B_{c}^{s} u_{c}=u_{b_{c}}^{s}
$$

using Lagrange multiplier local

$$
\begin{aligned}
& K_{r r}^{s} u_{r}^{s}+K_{r c}^{s} B_{c}^{s} u_{c}+B_{r}^{s T} \lambda=f_{r}^{s} \\
& \sum_{s} B_{c}^{s T} K_{c r}^{s} u_{r}^{s}+\sum_{s} B_{c}^{s T} K_{c c}^{s} B_{c}^{s} u_{c}=\sum_{s} B_{c}^{s T} f_{b_{c}}^{s}=f_{c} \\
& \sum_{s} B_{r}^{s} u_{r}^{s}=0 \\
& \text { global matrix }
\end{aligned}
$$

$$
K_{c c} \equiv \sum_{s} B_{c}^{s T} K_{c c}^{s} B_{c}^{s}
$$

Recipe

- FEM matrix with triangular pipe element. Linear or Quadratic Lagrangian base in both direction.
- Subdomain partition using MeTIS with non-zero points weighted FEM element.
- Eigenvalue problem $\mathrm{K} \phi=\mu \mathrm{B} \phi$ using HouseholderArnoldi.
- Linear system, $A \lambda=b$ using PBiCGSTAB with Lumped preconditioner.
- Subdomain multigroup equation $\mathrm{K}_{\mathrm{i}} \phi=$ s using PGMRES with SSOR preconditioner.

PGMRES algorithm

Ref) Y. Saad, Iterative Methods for Sparse Linear Systems.

Left preconditioned GMRES

$$
M^{-1} A x=M^{-1} b
$$

1. Compute $\mathbf{r}_{0}=M^{-1}\left(\mathbf{b}-A \mathbf{x}_{0}\right) \quad \beta=\left\|\mathbf{r}_{0}\right\|_{2} \quad \mathbf{v}_{1}=\mathbf{r}_{0} / \beta$
2. For $\mathrm{j}=1, \ldots, \mathrm{~m}$ Do:
3. Compute $\mathbf{w}=M^{-1} A \mathbf{v}_{j}$
4. For $i=1, \ldots, j$ Do:
5. $\quad h_{i, j}=\left(\mathbf{w}, \mathbf{v}_{i}\right)$
6. $\mathbf{w}=\mathbf{w}-h_{i, j} \mathbf{v}_{i}$
7. EndDo

- -

8. Compute $h_{j+1, j}=\|\mathbf{w}\|_{2} \quad \mathbf{v}_{j+1}=\mathbf{w} / h_{j+1, j}$
9. EndDo
10. Define $\quad V_{m}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}\right] \quad \bar{H}_{m}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1,1 \leq j \leq m}$
11. Compute $\quad y_{m}=\arg \min _{y}\left\|\beta \hat{e}_{1}-\bar{H}_{m} y\right\|_{2} \quad \mathbf{x}_{m}=\mathbf{x}_{0}+V_{m} y_{m}$
12. If converged Stop, else set $\mathbf{x}_{0}=\mathbf{x}_{m}$ and GoTo 1

The multigroup equation

$$
\left(\begin{array}{cccc}
A_{1} & -S_{2 \rightarrow 1} & -S_{3 \rightarrow 1} & -S_{4 \rightarrow 1} \\
-S_{1 \rightarrow 2} & A_{2} & -S_{3 \rightarrow 2} & -S_{4 \rightarrow 2} \\
-S_{1 \rightarrow 3} & -S_{2 \rightarrow 3} & A_{3} & -S_{4 \rightarrow 3} \\
-S_{1 \rightarrow 4} & -S_{2 \rightarrow 4} & -S_{3 \rightarrow 4} & A_{4}
\end{array}\right)\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right)=\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right)
$$

We can solve above eqn. using block symm. SOR.

$$
M_{\text {SSOR }}=\frac{1}{\omega(2-\omega)}(D-\omega E)^{-1} D^{-1}(D-\omega F)
$$

How to compute : $M^{-1} x=y \circ \circ \circ$

$$
(D-\omega E) D^{-1}(D-\omega F) y=x
$$

$$
\text { forward sweep }\left(I-\omega E D^{-1}\right) z=x
$$

 backward sweep $(D-\omega F) y=z$

Hessenberg matrix $\mathrm{H}:(\mathrm{m}+1) \times \mathrm{m}$

$$
H=\left(\begin{array}{llll}
h_{00} & h_{01} & h_{02} & h_{03} \\
h_{10} & h_{11} & h_{12} & h_{13} \\
& h_{21} & h_{22} & h_{23} \\
& & h_{32} & h_{33} \\
& & & h_{43}
\end{array}\right)
$$

$$
\arg \min _{y}\left\|\beta \hat{e}_{1}-\bar{H}_{m} y\right\|_{2}
$$

Hessenberg rotation

$y_{m}=\arg \min _{y}\|b-H y\|_{2}$
Can be solved by Least Squares method or, Hessenberg rotation method

$$
\begin{aligned}
& H=\left(\begin{array}{cccc}
h_{00} & h_{01} & h_{02} & h_{03} \\
h_{10} & h_{11} & h_{12} & h_{13} \\
& h_{21} & h_{22} & h_{23} \\
& & h_{32} & h_{33} \\
& & & h_{43}
\end{array}\right) \quad b=\left(\begin{array}{c}
\beta \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Omega_{0}=\left(\begin{array}{ccccc}
c_{0} & s_{0} & & & \\
-s_{0} & c_{0} & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right) \\
& \Omega_{0} H=\left(\begin{array}{cccc}
c_{0} h_{00}+s_{0} h_{10} & c_{0} h_{01}+s_{0} h_{11} & c_{0} h_{02}+s_{0} h_{12} & c_{0} h_{02}+s_{0} h_{12} \\
-s_{0} h_{00}+c_{0} h_{10} & -s_{0} h_{01}+c_{0} h_{11} & -s_{0} h_{02}+c_{0} h_{12} & -s_{0} h_{02}+c_{0} h_{12} \\
& h_{21} & h_{22} & h_{23} \\
& & h_{32} & h_{33} \\
& & & h_{43}
\end{array}\right) \\
& \Omega_{0} b=\left(\begin{array}{c}
c_{0} \beta \\
-s_{0} \beta \\
\end{array}\right) \\
& s_{0}=\frac{h_{10}}{\sqrt{h_{00}^{2}+h_{10}^{2}}} \quad c_{0}=\frac{h_{00}}{\sqrt{h_{00}^{2}+h_{10}^{2}}}
\end{aligned}
$$

Successive rotation to upper matrix

$$
\begin{aligned}
& \tilde{H} \equiv \Omega_{3} \Omega_{2} \Omega_{1} \Omega_{0} H \quad \tilde{b} \equiv \Omega_{3} \Omega_{2} \Omega_{1} \Omega_{0} b \\
& \tilde{H} y=\tilde{b}
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
\tilde{h}_{00} & \tilde{h}_{01} & \tilde{h}_{02} & \tilde{h}_{03} \\
& h_{11} & h_{12} & h_{13} \\
& & h_{22} & h_{23} \\
& & & h_{33}
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
\tilde{b}_{0} \\
\tilde{b}_{1} \\
\tilde{b}_{2} \\
\tilde{b}_{3} \\
\tilde{b}_{4}
\end{array}\right)
$$

$\operatorname{argmin}_{\mathrm{y}}: \quad y_{m}=\left(y_{0}, y_{1}, y_{2}, y_{3}\right)^{T}$
residual: \tilde{b}_{4}

Result (for IAEA3D problem)
outer iterations : ~2 ($\mathrm{m}=5$)
no. of $M^{-1} x: \sim 6$
\checkmark cf. conventional SOR ~ 150 iterations

Vertice graph

face based graph
node weighted graph

Find minimun edge cuts with same vertice weight using METIS.

IAEA problem - Nonzero point weight of

 vertices

Node base graph partitioning

Result (ns=2, nord=2/2)

Communication load

- Communication load increases almost linearly as number of partitions is increasing.
- MPI communication load can be significant for slow network as the number of partition increase.
- There may be a maximum number of partitions where speed up is limited by the network configuration.

optimum network configuration

switched network configuration

Conclusion and Further works

- FETI-DP extension to block symmetric and global nonsymmetric, neutron multigroup eigenvalue problem works well.
- Graph theory is used for arbitrary number of CPU partitioning with element vertice graph.
- Effect of network speed is not so significant (Gigabit) for few tens partitions. However, there is a bottleneck for large central communication.
> Need confirmation at larger and faster network cluster.

- Non-conforming FEM for partitioning.
- Important for
- Time dependent problem
- Soluble boron free reactors such as GCR, SFR
- Interior Penalty Galerkin method can be used for nonconforming FEM.

Thank you for attention. Any question or comment?

