

Oxidation Effect on Pool Boiling Heat Transfer in Atmospheric Saturated Water

Mr. Son, Hong Hyun Department of Nuclear Engineering in Hanyang University Nuclear Thermal-Hydraulics Laboratory Advisor: Prof. Kim, Sung Joong KNS Autumn Meeting, October 29-31, 2014, Pyungchang

Contents

- Background
 - ✓ Coolability limit on the IVR-ERVC
 - ✓ The effect of natural corrosion on the CHF
- Objectives
- Experimental Description
- Results and discussion
 - ✓ Surface characteristics
 - ✓ CHF enhancement
 - \checkmark Boiling mechanism along oxidation state and heater orientation
- Conclusion
- Future works

Background

E ST 1939

Coolability limit on conducting IVR-ERVC strategy

Objectives

 Evaluating the CHF considering the natural corrosion on the outer surface of RPV lower head

Definition of surface condition by natural corrosion Experimental evaluation of oxidation effect on the CHF Definition of the CHF enhancement along oxidation period and heater orientation

Experimental description

- Test specimen preparation
 - ✓ Test material: SS316L @Real RPV material: SA508 (Low carbon steel alloy)
 - ✓ Dimension of heat transfer area: 26×8×2 mm³
 - ✓ Chemical composition (unit: wt%)

/ ~ 64 times

	Carbon (C)	Manganese (Mn)	Phosphorus (P)	Sulfur (S)	Silicon (Si)	Nickel (Ni)	Chromium (Cr)	Molybdenum (Mo)	Vanadium (V)	Iron (Fe)
SS316L	0.03	2.0	0.045	0.03	0.75	10.0 - 14.0	16.0 ¥ − 18.0	2.0 - 3.0	-	balanced
SA508	0.35	0.40 - 1.05	0.025	0.025	0.15 - 0.40	0.4	0.25	0.1	0.05	balanced

Experimental description

• Oxidation treatment

Surface	Specimen	Ambient	Oxidation	Oxidation period		
treatment	number	condition	Temperature (°C)	(day)		
Clean	D001			-		
Clean	D002		-			
	D051			5		
	D052	Air	500			
Ovidation	D053					
Oxidation	D201		700	20		
	D202		700			
	D251		700	25		

Experimental description

• Test section

<Pool boiling experiment apparatus>

• Test matrix

Test material	SS316L				
Test condition	Saturated at atmospheric pressure				
Working fluid	DI water				
Test orientation (°)	0	175 - 180			
Oxidation period (day)	0, 5, 20	0, 5, 25			

Nuclear Thermal-Hydraulics Laboratory

• Surface morphology characteristics

• Surface characteristics: **Contact angle** and **Roughness**

CHF enhancement comparison with the other studies

Improved wettability can enhance the CHF. @Kandlikar (2001)

8

Wettability may be effective when coupled with continuous porous media.
@O'Hanley et al. (2013)

• Microstructure of the oxidized specimens @Bertrand et al. (2009)

Boiling mechanism (upward-facing): High heat flux (~ 10³ kW/m²)

11

Boiling mechanism (downward-facing): Low heat flux (~ 10² kW/m²)

Boiling visualization

• The hypothesized CHF-oxidation curve

Conclusion

- Natural corrosion on RPV surface may be helpful for enhancing the coolability of IVR-ERVC.
- Oxidation effect on the CHF is different for oxidation period and heater orientation.
 - \rightarrow The hypothesized CHF-oxidation curve

Future works

- Defining realistic RPV surface condition
- Necessity of more experiments for different oxidation period and heater orientation
- Proving and completing the hypothesized CHF-oxidation curve along oxidation periods or heater orientations

Thank You for Your Attention

Nuclear Thermal-Hydraulics Laboratory

Appendix – 1

Dry and wet natural corrosion

High temperature corrosion

Author	Oxidation condition	Chromium composition (wt%)	Oxide product	image	Author	Oxidation condition	Cr composition (wt%)	Oxide product	image	
Renato et al. (2003)	Natural weathering, 9 month	0.52	γ-FeOOH β-FeOOH α-FeOOH Fe ₂ O ₃ Fe ₃ O ₄	20 <i>µ</i> m	Bertrand et al. (2009)	Dry and wet air, 260 - 500°C, ~ 1000 hrs	0.013	Fe2O3 Fe3O4	Homatile (oquiaxed grains) Large magnetifie layer Columnar grains)	
Raman et al. (1989)	Natural corrosion wet(20m)/dry(10m) cycling	-	α-FeOOH γ-FeOOH γ-Fe ₂ O ₃	⊢ 10 µm	Chen and Yuen (2003)	Air, 570°C	-	Fe2O3 Fe3O4 FeO	⊥um Fc;O; Fc;	
Oh et al. (1999)	Rural, industrial, marine, 16 yrs	0.52 ~ 0.59	α-FeOOH γ-FeOOH γ-Fe ₂ O ₃ Fe ₃ O ₄	20µm Steel Substrate	Birosca et al. (2005)	Flowing air, 900 – 1000°C, 1200 – 1800 sec	-	Fe ₂ O ₃ Fe ₃ O ₄	roj Troj Pro Moste prepare 190a	

Appendix – 2

• CHF comparison with respect to oxidation periods

Appendix – 3

