NSSS Division

The Loss of Spent Fuel Pool Cooling Analysis during Plant Outage for OPR1000

October 31, 2014

Kim, Cheolwoo

(cwkim@kepco-enc.com)

Clean Nuclear, Safety First!

Contents

1	Introduction
2	Analysis Method of LOSFPC
3	Assumptions and Initial Conditions
4	Analysis Results
5	Conclusion

Clean Nuclear, Safety First!

1. Introduction

1. Introduction

Clean Nuclear, Safety First!

Recent Requirement

- Spent Fuel Pool (SFP) Analysis during Plant Outage
 - <- Fukushima disaster

Purpose

- To Establish the Success Criteria for the Probabilistic Safety Assessment (PSA)
- Thermal-Hydraulic (TH) Analysis of a Loss of Spent Fuel Pool Cooling (LOSFPC) during the Refueling Period (POS 8)
- To Investigate the Incipient Boiling Time, Time to Uncover, Time of Fuel Cladding Failure

Reference Plant

> OPR1000: Hanul Nuclear Power Plant Units 3&4 (HUN 3&4)

2. Analysis Method of LOSFPC

2. Analysis Method of LOSFPC

2014 KNS Autumn Meeting

Clean Nuclear, Safety First!

- Realistic and Best Estimate Analysis Method
- Reasonable Operating Conditions for Realistic PSA Model
- Computer Code: RELAP5/MOD3.3-Patch 4

✤ 20 Years of SFP for HUN 3&4 with Full Core Discharge

- > 12-month cycle: 6 batches
- 15-month cycle (transition from 12-month to 18-month): 3 batches
- > 18-month cycle: 7 batch including full core discharge

Plant Design States

- ➢ Replacement of SG and Power Uprated
- High Density Stored Racks

2. Analysis Method of LOSFPC

Clean Nuclear, Safety First!

✤Node Diagram (Fig.1)

Nodes 21: Racks for Prev. Spent Fuels (Region-II) Nodes 22: empty racks Nodes 23: Avg FAs (Region-I) Nodes: 41~44: Spent Fuel Pools above Racks

3. Assumptions and Initial Conditions

Clean Nuclear, Safety First!

3. Assumptions and Initial Conditions

Major Assumptions

- Full Core is Discharged to Region-I for Refueling
- > New Fuel Assemblies for Refueling is in Region-I
- All Gates are Closed
- Newly Discharged Full Core Fuels: 200 hrs after Rx Shutdown (vs. 233.7 hrs from PSA group)
- Previous Spent Fuels are All 54,000 MWD/MTU (54 months or 3 cycles of 18-month fuels) Stored in Region-II
- > ANS2005 Standard Decay Heat with 2 sigma uncertainty (8%)
- Considered Nuclides: U²³⁵(0.46), U²³⁸(0.07), Pu²³⁹(0.38), Pu²⁴¹(0.09) for Plus 7 Fuel
- Maximum FA of 68 for Each Batch
- > No Heat Transfer through Metals except Fuels
- > No Mass & Heat Transfer through Water Surface
- Constant Heat Generation of Stored Spent Fuels
- No Cross Flow between Racks
- No Radiation Heat Transfer
- Flat Axial Power Shape of Fuels

3. Assumptions and Initial Conditions

Clean Nuclear, Safety First!

st!

Initial Conditions

Parameters	Values	Remark
SFP Surface Pressure	101,325 Pa (1 atm)	-
SFP Surface Temperature	60 °C (333.15 K)	Max
Elevation of SFP Bottom	100.5 ft	-
Elevation of SFP Water Surface	142 ft (7.896 m above racks)	Nom
Decay Heat from SFs for 20 years	1.3547 MWt	-
Decay Heat from Full Core Discharge	9.167 MWt	
SFPC HX Flow Rate	2850 gpm (178 kg/s)	Min

4. Analysis Results

Clean Nuclear, Safety First!

4. Analysis Results

Clean Nuclear, Safety First!

Fig.2 Pressure Distribution of SFP

Fig.3 Temperature Distribution of SFP

4. Analysis Results

Clean Nuclear, Safety First!

Fig.4 Water Inventory in SFP

Fig.5 Water Level of Pool Above Racks

4. Analysis Results

2014 KNS Autumn Meeting

Clean Nuclear, Safety First!

Fig.6 Water Level of SF Racks

Fig.7 Comparison of Void in Fuel Racks

4. Analysis Results

Clean Nuclear, Safety First!

2014 KNS Autumn Meeting

Fig.8 Liquid Velocity of SF Racks

Fig.9 Steam Velocity of Fuel Racks

4. Analysis Results

Clean Nuclear, Safety First!

Fig.10 Comparison of Peak Cladding Temperatures

Clean Nuclear, Safety First!

Summary of Results

Time to	Description	Time (sec./hr)
SFP Boiling	Time of boiling at top surface of pool	17,000 (4.7)
Empty of Pool Water	Time of pool level less than 0.1 m (at pool above hottest FA)	185,600 (51.6)
Incipient Boiling	Based on continuous void formation at hottest FA channel	153,300 (42.6)
at Top of Active Core	At average FAs channel (newly discharged)	166,800 (46.3)
Eucl Uncover	Time to sharp increase of fuel cladding temperature (hottest FA)	218,000 (60.6)
ruei Uncover	At channel of average FAs (newly discharged)	214,600 (59.6)
Eucl Damage	Time to $PCT > 1477$ K, at hottest FA	234,100 (65.0)
ruei Damage	At average FAs (newly discharged)	231,400 (64.3)

5. Conclusion

5. Conclusion

Clean Nuclear, Safety First!

Applicability of RELAP5/MOD3.3 for T-H Behaviors of LOSFPC during Refueling

Incipient Boiling: 42.6 hrs

Fuel Uncover: 59.6 hrs

✤Fuel Cladding Failure: 64.3 hrs

Sufficient Time for Operator Action for the Success Criteria of PSA

Clean Nuclear, Safety First!

