

An Analysis on the Radioactivity Uncertainty Caused by Monte Carlo Stochastic Errors Using Sampling Based Method for the Accelerator Activation Problem

Gi Yeong HAN, Song Hyun KIM, Chang Ho SHIN 2014. 10. 31

Hanyang University

한양대학교

Context

- 1. Background
- 2. Motivation

- 3. Objective of Research
- 4. Method and Results
- 5. Conclusion

한양대학교

Background

한양대학교

HANYANG UNIVERSITY

Activation Analysis in Accelerator Facilities

LHC (Large Hadron Collider)

CMS Higgs Event

Background

한양대학교

Computational Method for Activation Calculation

Motivation

To Estimate the Activity Uncertainty Caused by Monte Carlo

Stochastic Error, the Estimation Procedure was Constructed

Using Sampling Based Method and Guideline of Monte Carlo

Stochastic Error For Reliable Activation Results was Proposed

한양대학교

Sampling Based Sensitivity & Uncertainty Analysis Method

If there is relation between x and y like 'y=y(x)=f(x)'

7

STEP1. Uncertainty Analysis Characteristics of Activity R.E What is the uncertainty in y(x) given the uncertainty in x? **STEP2.** Sensitivity Analysis **Basis Data for Flux** How important are the individual elements of x with respect **Error Guideline** to the uncertainty in y(x)? **STEP3.** Proposal of Guideline for Flux Error Spectrum

Method and Results

Analysis Scheme Based on Sampling Based Method

한양대학규

Sample Problem : Air Activation in βNMR Facility

한양대학교

Calculation Condition

- Source : 70 MeV Proton Beam $50\mu A$ Current $\sigma=1$ cm, Gaussian Profile
- Target : BeO (porous 60%)
- Chamber : Ta (Inner), SUS304 (Outer)
- Air : Dry Air at Room Temperature
- Surroundings
 Sealed Room (=No Streaming) Surrounded by Concrete Wall
- Irradiation/Cooling History : 8 hours Irradiation twice, 8 hours Cooling (3 Time-Step)

HANYANG UNIVERSITY

STEP1. Uncertainty Analysis Procedure

STEP1. Uncertainty Analysis Result

STEP2. Sensitivity Analysis Procedure

• Sensitivity = $\frac{R.E \text{ of Activity for Each Nuclide}}{R.E \text{ of Flux for Each Energy Bin}}$

한양대학교

HANYANG UNIVERSITY

STEP2. Sensitivity Analysis Results

• Reaction Characteristics of Produced Nuclide from Air Activation

• Max. Sensitivity Curve Provides Basis Data for Flux Error Guideline Curve

STEP3. Proposal and Application of Guideline

- Guideline Criteria : Relative Error of Final Activity < 2%
- Guideline(E_n) = (R.E. of Final Activity) / $S(E_n)$: Inverse Function of $S(E_n)$

Conclusion

- In this study, procedure and program to analyze the activity uncertainty caused by stochastic error of MC method were developed.
- Through Sensitivity and uncertainty analysis, the guideline for flux error spectrum was proposed to have confidence in activat ion calculation result.
- It is expected that the developed method and procedure will contribute to increasing the accuracy and reliability on the activat ion calculation.

Thank You

한양대학교

HANYANG UNIVERSIT