KNS 2014 autumn

Verification of Heat Exchanger Design Code KAIST_HXD by Experiment

Seungjoon Baik

Master's Program KAIST Nuclear Power & Propulsion Lab. Dept. of Nuclear and Quantum Engineering <u>bsj227@kaist.ac.kr</u> +82-42-350-5869

CONTENTS

(1) What is Supercritical CO₂ & Why CO₂?

Substance ^{[3][4]}	Critical temperature 🛋	Critical pressure м
Helium	-267.96 °C (5.19 K)	2.24 atm (227 kPa)
Hydrogen	–239.95 °C (33.20 K)	12.8 atm (1,300 kPa)
Neon	-228.75 °C (44.40 K)	27.2 atm (2,760 kPa)
CH ₄	-82.3 °C (190.8 K)	45.79 atm (4,640 kPa)
Nitrogen	-146.9 °C (126.2 K)	33.5 atm (3,390 kPa)
Fluorine	-128.85 °C (144.30 K)	51.5 atm (5,220 kPa)
Argon	-122.4 °C (150.7 K)	48.1 atm (4,870 kPa)
Oxygen	-118.6 °C (154.5 K)	49.8 atm (5,050 kPa)
Krypton	-63.8 °C (209.3 K)	54.3 atm (5,500 kPa)
Xenon	16.6 °C (289.8 K)	57.6 atm (5,840 kPa)
CO ₂	31.04 °C (304.19 K)	72.8 atm (7,380 kPa)
N ₂ O	36.4 °C (309.5 K)	71.5 atm (7,240 kPa)
Ammonia ^[5]	132.4 °C (405.5 K)	111.3 atm (11,280 kPa)
Chlorine	143.8 °C (417.0 K)	76.0 atm (7,700 kPa)
Bromine	310.8 °C (584.0 K)	102 atm (10,300 kPa)
Water ^{[6][7]}	373.946 °C (647.096 K)	217.7 atm (22,060 kPa)
H ₂ SO ₄	654 °C (927 K)	45.4 atm (4,600 kPa)
Sulfur	1,040.85 °C (1,314.00 K)	207 atm (21,000 kPa)
Mercury	1,476.9 °C (1,750.1 K)	1,720 atm (174,000 kPa)
Caesium	1,664.85 °C (1,938.00 K)	94 atm (9,500 kPa)
Ethanol	241 °C	62.18 atm (63 bar, 6,300 kPa)
Lithium	2,950 °C (3,220 K)	652 atm (66,100 kPa)

(2) Supercritical CO₂ Brayton Cycle

Maximizing advantages from Steam Rankine and Brayton cycle

- Steam Rankine cycle \rightarrow Small pumping work
- Gas Brayton cycle \rightarrow High efficiency in High T.I.T
- Simple layout is sufficient to achieve high efficiency

(3) Supercritical CO₂ Brayton cycle application area

- Generation IV reactor
 - Sodium cooled fast reactor
 - Very high temperature reactor
 - Gas cooled fast reactor

(4) Supercritical CO₂ cycle characteristics

Compressor inlet condition control is important.

Dramatic property change of S-CO₂ near the critical point (31°C, 7.4MPa)

(5) Research objectives

- Precooler (emitting the waste heat) temperature control is important.
 - Compressor inlet condition is solely dependent on the precooler performance.

Cycle minimum temperature affects more to the cycle efficiency rather than cycle operating maximum temperature.

The Difficulty in computational analysis or numerical design approach due to the dramatic property change of S-CO₂ near the critical point .

Experiment and real operation experiences are necessary to support.

Proper Precooler design!!

- Heat exchanger design code, validation, Performance test

S-CO₂PE [Supercritical CO₂ Pressurizing Experiment]

Compressor type		Seal-free canned motor pump	
Compressor power [kW]		26	
Mass flow [kg/s]		2.78	
Compressor pressure ratio		1.2	sure
Maximum RPM		4620	Press
Inlet	Pressure	7.56 (MPa)	
Condition	Temperature	32 (°C)	
Electrical he	lectrical heater [kW] 0.5		
Precooler type		Spiral tube heat exchanger	

Sensor Accuracy

Sensor type	Range	Accuracy
RTD	0 ~ 100 °C	± 0.2°C
Pressure transmitter	0 ~ 120 bar	± 0.05%
Differential pressure gauge (CO ₂)	0 ~ 250 kPa	± 0.065%
Differential pressure gauge (water)	0.5 ~ 100 kPa	± 0.04%
Mass flow meter (CO ₂)	0 ~ 5 kg/s	± 0.16%
Flow meter (water)	0 ~ 3.33 kg/s	± 0.5%

To decrease the measurement error

- The RTD sensors were immersed in thermostat for calibration.
- The pressure gauges and differential gauges were tested with calibrator.

STHE

Spiral Tube Heat Exchanger
 SENTRY EQUIPMENT CORP.

• Specification data - <u>LMTD method</u>

	Tube side	Shell side
Fluid type	CO ₂	Water
Mass flow rate [kg/s]	2.78	1.052
Inlet Temp. [°C]	32.06	7
Outlet Temp. [°C]	32	12.3
Inlet pressure [MPa]	7.56	0.45
Pressure drop [kPa]	48	13
Heat transfer area [m ²]	0.635	
Heat load [kW]	23.4	
Overall Heat transfer coefficient [W/m ² K]	1656.4	
Log mean temperature difference [°C]	22.27	
Volume [m ³]	0.01987	
Diameter [m]	0.324	
Length [m]	0.241	
		11

STHE Experiment data

LMTD method : constant C_p

	Temperature (°C)			
	Tube side	Shell side	Tube side	Shell side
Fluid type	CO ₂	Water	CO ₂	Water
Mass flow rate [kg/s]	2.78	1.052	1.016	0.078
Inlet Temp. [°C]	32.06	7	36.605	11.241
Outlet Temp. [°C]	32	12.3	34.662	33.869
Inlet pressure [MPa]	7.56	0.45	7.425	0.45
Pressure drop [kPa]	48	13	47.58	0.03
Heat transfer area [m ²]	0.635		-	
Heat load [kW]	23.4		7.4	
Overall Heat transfer coefficient [W/m ² K]	1656.4		1222.7	
Log mean temperature difference [°C]	22.27		9.6337	

STHE Experiment data

Overall heat transfer coefficient :

Liquid > Supercritical state > gas state

- High Reynolds number
 - Low viscosity
 - Inner tube diameter : 8mm

3. Heat exchanger design code KAIST_HXD

3. Heat Exchanger Design Code

PCHE (Printed Circuit Heat Exchanger)

- High Temperature, High Pressure (S-CO₂ power cycle application)
- High Compactness[m²/m³] Heat exchanger

3. Heat Exchanger Design Code

KAIST_HXD

- Performance
- Pressure drop
- PCHE core design
 - Flow type : Counter-current Cross flow
 - Exclude header

3. Heat Exchanger Design Code KAIST_HXD

Due to the repetitive channel geometry of PCHE, the overall computation can be simply interpreted from a set of representative hot and cold unit channel

3. Heat Exchanger Design Code

KAIST_HXD

Heat transfer coefficient (Nusselt number) & Friction factor

- CFD analysis (ANSYS CFX) [Seung Gu Kim et al.]
- Experimental study of Ishizuka (2400<Re<6000)

Hot channel

0.000e+000 [m s^-1]

Fin angle	32.5°		
Diameter	1.9 mm		
Reynolds number	2,000 < Re < 58,000		
Nusselt number	Nu = (0.02925 ± 0.00153) Re ^{0.8138 ± 0.00501} R ² = 0.99904		
Friction factor	$f = (0.25150 \pm 0.00969) \text{Re}^{-0.20315 \pm 0.00414}$ R ² = 0.98341		
Cold channe	Velocity Vector 1 2.000e+001 1.500e+001 1.000e+001 5.000e+000		

Nuss

20

100007-66 5

2k

4k

5k 6k 7k 8k 9

Reynolds number

20k 30l

4. Summary & Further works

Designed PCHE for S-CO₂PE facility

Specification

Material		SS316L
Density [g/cm ³]		7.9
Thermal cor	nductivity [W/m·K]	15.3
Hot side	Maximum Pressure [MPa]	19.5
	Maximum Temperature [°C]	150
Cold side	Maximum Pressure [MPa]	1.3
	Maximum Temperature [°C]	150

4. Summary & Further works

Further works

- PCHE Experiment for KAIST_HXD code Validation
- CFD analysis comparing with experiment result
- Various range experiment for equilibrium-state cycle condition
- Comparing with STHE heat exchanger, PCHE availability, characteristics.

5. References

[1] Jahar Sarkar, Second law analysis of supercritical CO₂ recompression Brayton cycle, Energy 34 (2009) 1172-1178.

[2] Takao Ishizuka, Yasuyoshi Kato, Yasushi Muto, Konstantin Nikitin, Ngo Lam Tri, Hiroyuki Hashimoto, Thermal-hydraulic characteristics of a printed circuit heat exchanger in a super critical CO₂ loop, 2005 NURETH-11.

[3] Tri Lam Ngo, Yasuyoshi Kato, Konstantin Nikitin, Takao Ishizuka, Heat transfer and pressure drop correlation of microchnnel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles, Experimental Thermal and Fluid Science 32 (2007) 560-570.

[4] Seong Gu Kim, Yoonhan Ahn, Jekyoung Lee, Jeong Ik Lee, Yacine Addad, CFD Analysis of Printed Circuit Heat Exchanger for the Supercritical CO2 Brayton Cycle, Korean Nuclear Society Spring 2014.

[5] H.Song, J.Van Meter, S.Lomperski, D.Cho, H.Y.kim, A.Tokuhiro, Experimental Investigations of a printed circuit heat exchanger for supercritical CO2 and water heat exchange, NTHAS5-N002 (2006)

[6] Yoonhan Ahn, Jekyoung Lee, Seong Gu Kim, Jeong Ik Lee, Jae Eun Cha, The design study of supercritical carbon dioxide integral experiment loop, Turbo Expo 2013 GT2013-94122.

[7] V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT-ANP-TR-100, 2004.

[8] Youho Lee, Jeong Ik Lee, Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle, Annals of Nuclear Energy 73 (2014) 84-95

THANK YOU

