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q Why Zero-Decay Heat Model is required?
mThe initial condition of the simulator aims at the full-power operation and 

the equilibrium decay heat is assumed with the infinite operation time.
à maximum decay heat is assumed.

mA start-up operation of the initial core cannot be simulated appropriately 
under this condition because a significant decay heat exists for a very lon
g time even if the reactor is scrammed.
8It takes about 109 seconds for the FP decay power to decrease to 0.02 % of the 

full-power assuming the infinite reactor operating time. 
m In order to eliminate the effect of the decay heat during a fresh core oper

ation, an initial condition of zero-decay heat is required.

q Two Step Calculation for Zero-Decay Heat
m Step 1: Steady-state run to stabilize thermal-hydraulic condition

8Considering fission power only neglecting feedback and decay heat
m Step 2: Transient run with immediate reactor scram

8Restoring feedback reactivity and decay heat calculation

Introduction to Zero-Decay Heat Model
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JRTR PCS Analysis Model
q MARS Model for Primary Cooling System (PCS)

m Input deck for safety analysis of JRTR to simulate PCS and Rx pool
mAdding boundary volumes and junctions for interface with 3KeyMaster

8To reflect change of boundary conditions between PCS and other system
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q Improvement of Point Kinetics
mXenon transient model

m Shifting critical rod position by modifying bias reactivity

Point Kinetics Model for JRTR
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Point Kinetics Data (1)
q Point Kinetics and Reactivity

q Delayed Neutron Group
mMARS can deal with maximum 

six delayed neutron groups
à Neglecting photo-neutron group

q Rod Worth by Scram Reactivity
mRod position vs. reactivity table
mCritical rod position

8430 mm from bottom of core
8Rod worth is zero at that height.

Group Decay constant Yield fraction (%)
1 0.0125 3.2
2 0.0317 16.8
3 0.1090 16.4
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q Point Kinetics and Reactivity

q Delayed Neutron Group
mMARS can deal with maximum 

six delayed neutron groups
à Neglecting photo-neutron group

q Rod Worth by Scram Reactivity
mRod position vs. reactivity table
mCritical rod position

8430 mm from bottom of core
8Rod worth is zero at that height.

3 0.1090 16.4
4 0.3170 45.6
5 1.3500 13.3
6 8.7300 4.7
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q Feedback Reactivity
m Feedback reactivity is not considered in the 1st step.
m In the 2nd step, all reactivity from feedback with axial node weighting is 

considered.
8Moderator temperature coefficient = -0.0054 mk/K
8Fuel temperature coefficient = -0.01 mk/K

q Decay Heat Model
m 1st step calculation

8Decay heat model is not included.
m 2nd step calculation

8ANS73 model used with 1.0 gain value for B-E analysis
8Actinide decay model is not used.
8Power operational history option is used with zero operating time.

– For initial core start-up model

8Reactor is scrammed at first to minimize decay power in Step 2 calculation.

Point Kinetics Data (2)
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q The 1st Step Calculation
m Steady-state run without feedback and decay heat

8‘no-gamma’ option used for decay heat model and all feedback reactivity = 0
8Total reactor power: 5 MW (produced by fission only)

– Thermal-hydraulic condition (temperature of fluid and heat structure) will be 
stabilized at the full power level.

– Reference temperatures of fluid and heat structures, which will determine the 
feedback reactivity in the 2nd step calculation, are determined in this step. 

q The 2nd Step Calculation
mRestart run with feedback and decay heat by using rstplt file from 1st step 

8All existing inputs for kinetics are replaced with new inputs.
8‘gamma’ option is used for decay heat and feedback reactivity is restored.
8Power history data à zero operating time
8Reactor scram should be invoked at first to decrease decay heat power.

– Fission product decay heat is proportional to the fission power.
– Without reactor scram, fission product decay heat would be increased drastically 

and reach a significant level in short time.

Two-step Method for Zero-Decay Heat 
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q Steady-state Run Results
mRunning for 1000 sec. to stabilize thermal-hydraulic conditions
m Fluid conditions are stabilized in 1000 sec.

8Core inlet and outlet temperature are slightly changed but almost stabilized.
8Heat structures also become equilibrium as fluid conditions become stable.

mReactor power is maintained at constant value during calculation
8No feedback and no decay heat

Results: 1st Step Run
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q Restart Run Results
mRunning for 9000 sec. to decrease 

decay heat by using 1st rstplt
mAll rods are fully inserted into core 

at first to simulate reactor scram.
8At first, a certain amount of decay 

heat is generated due to 
significant fission power but 
decreased as fission power is 
vanished.

– A little of decay heat is generated 
but negligible.

8Finally, decay heat is decreased to 
negligible level (0.4 W) for 9000 s 
only.

8Calculation time is quite less than 
that of case when maximum decay 
heat is assumed.

Results: 2nd Step Run
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Initial Core Start-up Simulation
q Assumptions

m All reactor control systems including RRS and RPS are not used.
m Xenon poison is not considered.
m Secondary cooling system (SCS) is under normal operation.
m Withdrawing all CARs to critical position for the start-up operation

8Remember that all reactivity feedback should be zero at full power level.

q Reactor Power
m Positive reactivity is inserted due to low fluid and fuel temperature (+$ 0.08)
m Slight power overshoot is estimated before decay heat is in equilibrium.

Korean Nuclear Society Autumn Meeting, 30 Oct. 2014 10

q Assumptions
m All reactor control systems including RRS and RPS are not used.
m Xenon poison is not considered.
m Secondary cooling system (SCS) is under normal operation.
m Withdrawing all CARs to critical position for the start-up operation

8Remember that all reactivity feedback should be zero at full power level.

q Reactor Power
m Positive reactivity is inserted due to low fluid and fuel temperature (+$ 0.08)
m Slight power overshoot is estimated before decay heat is in equilibrium.

Total

Fission
Decay

Total

Fission

Decay



q Reactivity and Fluid Temperature
mRod worth is zero because all rods are in critical position.
m Both fuel and moderator reactivity are decreased as core exit 

temperature increases after 30 minutes.
mAs fluid temperature increases, total reactivity comes to zero.
mCore inlet temperature slowly increases as core outlet temperature 

increases. 

Initial Core Start-up Simulation
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Summary
q Nearly zero-decay heat condition has been generated with two-st

ep calculation method by using the MARS code to simulate the st
art-up operation of the fresh core.

q This is very effective way to simulate the start-up operation beca
use the decay power which can affect the temperature of the cool
ant and fuel during the operation is at extremely low level. 

q As for simulator application, this method has been successfully ap
plied into the JRTR simulator. 

q This method will be applicable to not only the simulator but also g
eneral safety analysis for the initial core by using the MARS code. 
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