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1. Introduction 
 

There are many problems related to multi-step Monte 
Carlo (MC) calculation. Surface Source Reading (SSR) 
and Surface Source Writing (SSW) options in MCNP [1], 
MC depletion calculation, accelerator shielding analysis 
using secondary particle source term calculation, and 
residual particle transport calculation caused by 
activation are the examples of the simulations. In these 
problems, the average values estimated from the MC 
result in the previous step are used as sources of MC 
simulation in the next step. Hence, the uncertainties of 
the results in previous step are usually not considered for 
calculating that of next step MC simulation even though 
they are propagated as the stepwise progression. 
Therefore the real uncertainty considering the stepwise 
error propagation should be estimated to get reliable 
results from multi-step MC. Brute force technique using 
the multiple clones of input with different random seeds 
for each step MC is the most straightforward and 
accurate method to evaluate the real uncertainty. 
However, due to the computational cost to get the 
reliable results, a more efficient and accurate method is 
needed. To solve the problem, a method using the adjoint 
calculation in 2 step MC is proposed in Oak Ridge 
National Laboratory (ORNL) [2]. However, there are 
limitations in accuracy of the adjoint flux and lack of 
correlation degree between neutron fluxes in each cell. In 
this study, a new approach to calculate the real variance 
is proposed for improving the uncertainty estimation 
efficiency. Using the method, a real uncertainty in the 
simple activation problem was evaluated. The results 
were compared with those of the previous method 
(ORNL) and the brute force technique.  

 
2. Methods and Results 

 
In this section theoretical background and comparison 

results of the real uncertainty estimation methods are 
described; in section 2.1, theory and methodologies to 
evaluate the real uncertainty are introduced; in section 
2.2, verification of the real uncertainty estimation 
method is pursued. 
 
2.1 Proposal on the Theory and Methodologies   
 
2.1.1 Error Propagation in 2 Step MC Calculations 
  

The purpose of this study is to calculate the real 
uncertainty in 2nd step MC calculation (MC2) which 
includes the uncertainty developed from uncertainty of 
1st MC calculation (MC1). The relationship between the 
real uncertainty and apparent uncertainty computed in 
MC2 is described as Eq. (1). 

 
𝜎𝜎𝑟𝑟2 = 𝜎𝜎𝑎𝑎2 + 𝜎𝜎ℎ2                                 (1)                        

 
where 𝜎𝜎𝑟𝑟 is the real standard deviation (SD) in MC2, 𝜎𝜎𝑎𝑎 
is the apparent SD in MC2, and 𝜎𝜎ℎ  is the hidden SD 
propagated from errors in MC1. In order to estimate the 
real uncertainty, a simple problem is assumed. In MC1, 
there are lots of detectors. The responses computed from 
MC1 become the sources, and a single detector is located 
for MC2. In this situation, the response in MC2 can be 
derived by Eq. (2) 
 

𝑅𝑅 = �𝑆𝑆𝑖𝑖𝐶𝐶𝑖𝑖
𝑖𝑖

                                      (2) 

 
where R is the response in MC2, 𝑆𝑆𝑖𝑖  is the ith source 
strength computed from ith detector in MC1, and 𝐶𝐶𝑖𝑖 is the 
expected contribution from particles distributed in 𝑆𝑆𝑖𝑖 
sources to R response. From Eq. (2), the SD of the R can 
be derived as shown in Eq. (3) using the error 
propagation formula. 
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where 𝜎𝜎𝑅𝑅 is the SD of the response in MC2, 𝜎𝜎𝑆𝑆𝑖𝑖  is the SD 
of the 𝑆𝑆𝑖𝑖, 𝜎𝜎𝑆𝑆𝑗𝑗 is the SD of the 𝑆𝑆𝑗𝑗 ,𝜎𝜎𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 is the covariance 
between 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗, 𝜎𝜎𝐶𝐶𝑖𝑖  is the SD of the 𝐶𝐶𝑖𝑖, 𝜎𝜎𝐶𝐶𝑗𝑗  is the SD 
of the 𝐶𝐶𝑗𝑗 , and 𝜎𝜎𝐶𝐶𝑖𝑖𝐶𝐶𝑗𝑗  is the covariance between 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗. 
If there was no uncertainty in 𝑆𝑆𝑖𝑖 , the first and second term 
of RHS in Eq. (3) would equal to zero. However, in case 
of 2 step MC problem, 𝑆𝑆𝑖𝑖 includes uncertainties because 
it is computed by Monte Carlo method (MC1). Thus, 
these two terms correspond to 𝜎𝜎ℎ  in Eq. (1), and this 
relationship can be expressed as Eq. (4). 
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If we can estimate 𝜎𝜎ℎ by Eq. (4), 𝜎𝜎𝑟𝑟 can be evaluated by 
Eq. (1). In the following sections, the methods for 
solving Eq. (4) are proposed. 
  
2.1.2 Error Estimation Method Using the Adjoint 
Calculation 

 
In a previous study [2], they proposed an estimation 

method of Eq. (4) using the adjoint flux. Actually, the 
study were pursued to evaluate the lower bound of 𝜎𝜎ℎ. 
Because each source strength in MC2 is calculated from 
responses in MC1, it varies dominantly by the number of 
particles incident on each detector from MC1 simulation. 
Therefore, when Si increases, the neighboring source 
strength also increases because it is originated from the 
increased number of incident particles ( 𝜎𝜎𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 > 0 ). 
However, the sources located far away from each other 
have low dependency (𝜎𝜎𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 ≅ 0). This shows that there 
is no negative correlation between the source strengths in 
MC2, thus the 2nd term of RHS in Eq. (4) is bigger than 
zero. By this process, this term can be assumed to be zero, 
and only the lower bound of 𝜎𝜎ℎ is estimated as followed 
in Eq. (5). 

 

𝜎𝜎ℎ = ��𝐶𝐶𝑖𝑖2𝜎𝜎𝑆𝑆𝑖𝑖2
𝑖𝑖

                                 (5) 

 
The Ci can be further expanded into Eq. (6). 
 

𝐶𝐶𝑖𝑖 = �𝐶𝐶𝑖𝑖(𝐸𝐸)𝑓𝑓𝑖𝑖(𝐸𝐸)𝑑𝑑𝐸𝐸                             (6) 
 
where 𝐶𝐶𝑖𝑖(𝐸𝐸) is the contribution energy spectrum of 𝑆𝑆𝑖𝑖 to 
R, and 𝑓𝑓𝑖𝑖(𝐸𝐸) is the probability density function of source 
energy spectrum in MC2. Because the meaning of 𝐶𝐶𝑖𝑖(𝐸𝐸) 
is the adjoint flux, Eq. (5) can be arranged by applying 
Eq. (6) and substituting 𝐶𝐶𝑖𝑖(𝐸𝐸) for ∅𝑖𝑖+(𝐸𝐸) as given in Eq. 
(7).  
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                   (7) 

 
According to Eq. (7), if the ∅𝑖𝑖+(𝐸𝐸) is computed from the 
adjoint calculation in MC2, the lower bound of the 𝜎𝜎ℎ 
can be estimated. However, because ∅𝑖𝑖+(𝐸𝐸)  is usually 
inaccurate due to the limitation of deterministic approach, 
it should be refined by comparing the response evaluated 
from Eq. (2) using ∅𝑖𝑖+(𝐸𝐸) to that computed from MC2 
simulation.     
 
2.1.3 Proposed Method Using Forward-Adjoint 
Calculation and Union Tally 
 

In contrast with conventional solution using the 
adjoint flux, a methodology to get the result of Ci by the 
forward calculation in MC2 is proposed in this study. 
The lower bound of 𝜎𝜎ℎ  can be estimated using the 
proposed method without any additional calculation in 

MC2. First, the Eq. (4) can be modified into Eq. (8) by 
multiplying and dividing the 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗. 
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The physical meaning of 𝑆𝑆𝑖𝑖𝐶𝐶𝑖𝑖  is the response 

originated from Si; therefore, it can be estimated from the 
MC forward calculation. Also, the energy spectrum of 
the adjoint flux is reflected in the MC particle transport 
process. Hence, there is no need to refine the inaccurate 
adjoint flux. As a result, this approach has an advantage 
over the previous one in evaluating the 1st term of RHS 
in Eq. (8). Also, to obtain 𝜎𝜎ℎ, the covariance between the 
source strengths, the 2th term of RHS in Eq. (8) should be 
quantified. In this study, an evaluation method for 𝜎𝜎𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 
is developed by defining a union tally. If we calculate not 
only the individual source strength (Si, Sj), but also the 
sum (Si+Sj) defined as the union tally in MC1, the 
average and relative error of each calculation can be 
evaluated. Using the error propagation formula, the 
relationship between the uncertainties of three tallies can 
be represented by Eq. (9), and the covariance between Si 
and Sj can be estimated by Eq. (10). 
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2 + 2𝜎𝜎𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗                           (9)    
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where U means the union tally summing Si+Sj, and 𝜎𝜎𝑈𝑈 is 
SD of the union tally. After applying the Eq. (10) to Eq. (8), 
the proposed estimation method finally can be derived as 
followed in Eq. (11). 
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2.2 Verification of the Real Uncertainty Estimation 
Methods 
 
   For the verification of the proposed estimation method, 
two activation problems were assumed and evaluated by 
using MCNPX 2.7.0 code with JENDL/HE-2007 [3] and 
JENDL-4.0 [4] neutron cross-section libraries and 
mcplib84 photon cross-section library. It was assumed 
that a neutron source in MC1 is a point source having the 
energy of 14 MeV and strength of 2 × 1010 particles/sec, 
and there are 2 types of detectors which consist of 4 and 
8 cubic cells entirely composed of 59Co. After a long 
neutron irradiation, a 60Co is produced by (n, γ) reaction 
and its production rate is the equal to the activation rate 
density as shown in Eq. (12). 

 

𝐴𝐴(𝑟𝑟) = �∑(𝐸𝐸)∅𝑛𝑛(𝑟𝑟,𝐸𝐸)𝑑𝑑𝐸𝐸                      (12) 

  
where 𝐴𝐴(𝑟𝑟) is the activity per volume of the  60Co, ∑(𝐸𝐸) 
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is the macroscopic cross section for (n, γ) reaction and 
∅𝑛𝑛(𝑟𝑟,𝐸𝐸) is the neutron flux. Because it is the radioactive 
nuclide, it emits the residual radiations as it decays. 
Hence, in MC2 simulation, the 1.17 MeV and 1.33 MeV 
photons emitted from 60Co were used as sources, and the 
single volumetric detector is defined. F8 FT RES tally 
option is used to calculate the production rate of 60Co, 
and F4 tally was used in MC2 simulation. The schematic 
descriptions for the benchmark problems are shown in 
Fig. 1. 
 

 
(a) 4-Cell Problem 

 

 
(b) 8-Cell Problem 

Fig. 1. The Overview of the Benchmark Problem 
 

The result of the real uncertainty estimated from the 
brute force technique was used as the reference value. 
101 random seeds for each step of MC simulation were 
used. And, by the statistical processing, 𝜎𝜎𝑟𝑟  were 
estimated with 90% confidence interval. Then, it was 
compared with that of other estimation methods. The 
previous method was pursued by calculating the adjoint 
flux using Denovo [5] in SCALE MAVRIC sequence [6]. 
The adjoint parameters were determined by comparing 
the adjoint fluxes with those evaluated from MONACO 
[7]. They were determined to 47 energy group/S8 (8 
quadrature set)/P3/2cm mesh size for both benchmark 
problems. To estimate the uncertainty with the proposed 
method, separate transport method (ST method) was 
performed. To fix the total calculation cost, the particle 
histories are proportionally allocated to individual source 
strength. The covariance was calculated by adding ‘T’ 

tally option in MC1 simulation. Here is the covariance 
matrix of 8-cell benchmark problem in Fig. 2.  
 

 
Fig. 2. Correlation Coefficient Matrix of the Benchmark 
Problem 
 

The results estimated by the three methods are given 
in Table I. In 4-cell problem, both the previous and 
proposed methods are on the 90 % confidence interval of 
the real SD. However in 8-cell problem, the result 
estimated by using the adjoint based method does not 
agree within 90 % confidence interval. This shows that 
the proposed method has a good accuracy for the analysis 
of the uncertainty propagation. Also, the covariance data 
is calculated during the MC1 simulation without any 
additional calculation; therefore, it gives a large 
efficiency for complex systems.  
 
Table I: Comparison of the Real SD Results (𝜎𝜎𝑅𝑅) Estimated 
from Each Method for 2 Benchmark Problems 

Case 

Real Standard Deviation (𝜎𝜎𝑅𝑅) 
Reference Prev. Prop. 

Brute Force Technique 
(90% conf. Intv.) 

Adjoint 
Cal.  

ST & 
Union 

4*  128.67 (115.39, 145.75) 121.38 128.59 
8*  57.477 (51.545, 65.109) 50.304 56.849 

* 90% Confidence Interval 
* 4-Cell, 8-Cell Benchmark Problem  
 

3. Conclusions 
 

In this study, a new method using the forward-adjoint 
calculation and the union tally is proposed for the 
estimation of real uncertainty. For the activation 
benchmark problems the responses and real uncertainties 
were estimated by using the proposed method. And, the 
results were compared with those estimated by the brute 
force technique and the adjoint-based approach. The 
result shows that the proposed approach gives an 
accurate result comparing with the reference results. 
Also, it is expected that it will have a high efficiency for 
complex systems because the covariance data can be 
calculated during the MC step 1 simulation without any 
additional calculations. The developed method will 
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contribute to increasing the accuracy and reliability for 
estimation of the real uncertainty in various 2 step MC 
problems.     
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