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1. Introduction 
 

The two-fluid model is widely used in the multi-
phase flow analysis. The governing equations are 
obtained by averaging the local instantaneous 
conservation equations in time, volume, over ensemble 
or in some combination of these. Among them, the 
time[1] and volume[2] averagings have been popularly 
used in gas-liquid two-phase flows. The standard two-
fluid model treats the dispersed phase, such as bubble or 
mist flow, as a materially-connected phase (continuous 
phase), and thus there is a difficulty in modeling stress 
terms in the averaged momentum equations.  

Ansderson and Jackson[3] and Prosperetti[4] 
formulated the averaged momentum equations for 
dispersed flow in a different manner. They averaged the 
equation of a solid/fluid particle motion that includes 
various force terms such as the drag, lift, added mass, 
and history forces. The approach might be more 
reasonable for dispersed flow. Recently, Kim et al[5, 6] 
showed theoretically that the different momentum 
equations can predict the motion of the fluid particle 
against the surrounding fluid correctly. This approach is 
validated through one-dimensional simulations in a pipe, 
contraction and expansion. 

In this study the averaged two-fluid momentum 
equations based on the equation of a fluid particle are 
investigated with a multi-dimensional thermal hydraulic 
code, CUPID. The CUPID code has been developed in 
Korea Atomic Energy Research Institute (KAERI) for 
the analysis of transient two-phase flows in nuclear 
reactors. It employs a two-fluid three-field model. The 
governing equations are discretized by the finite volume 
method (FVM) and uses unstructured mesh. The 
validation of CUPID can be found in Yoon’s paper[7]. 
Since CUPID is a multi-dimensional code, it does not 
need any wall friction partitioning terms used in one 
dimensional thermal hydraulics codes but solves the 
shear stress directly. The validity of the momentum 
equations is checked by solving a simple two-
dimensional turbulent channel flow without gravity 
including the parameter variations, such as inlet velocity, 
Reynolds number, mesh, inlet void fraction. 

 
2. Two-Fluid Momentum Equations 

 
2.1 Two-Fluid Momentum Equations 
 

The governing equations for the Eulerian-Eulerian 
approach are obtained by taking the time-[1] and 

volume-[2] average over the conservation equations. 
For adiabatic incompressible flows, the momentum 
equation for a phase k is given by 
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Meanwhile, Anderson & Jackson[3] derived the 

momentum equations from the equation of motion for a 
single solid particle and the Navier-Stokes equation for 
fluid. If collisions between particles are not taken into 
account, the momentum equation for a phase k is given 
by the following modified form as 
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where the subscript c denotes the continuous-phase. The 
key difference from Eq. (1) is that the pressure and the 
viscous stresses of the continuous phase are used for 
every phases. This is because the motion of the 
dispersed phase is caused by the stresses of the 
surrounding continuous fluid. In Eq. (2), ak  is outside 
of the divergence operator with regard to the viscous 
stress tensor, whereas it is inside of the divergence 
operator in Eq. (1). Moreover, as shown in Eq. (2), the 
disperse-phase equation is expressed with the pressure 
and viscous stresses of the continuous-phase. Physically, 
this means that the disperse-phase such as bubbles and 
droplets move in response to the surrounding 
continuous fluid. The pressure and stresses inside the 
disperse-phase are determined by the hydrodynamic 
relations with surrounding fluid quantities and the 
interfacial jump conditions. 

Following equations show the formulation of the 
momentum equations in the CUPD code according to 
the abovementioned theories in Eq. (1) and Eq. (2). 

For bubbly flows, the disperse-phase is gas (d=g) and 
the continuous-phase is liquid (c=f). The first type in Eq. 
(1) is applied to Eqs. (3)-(4), and the second type in Eq. 
(2) is for Eqs. (5)-(6), as follows: 
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where if  is the substitution of ikf  in Eq. (1). Given the 
absence of phase change, the interfacial jump condition 
for momentum leads to = - = -if ig if f f . In Eqs. (3) to 
(6), a single pressure is assumed; = =g fp p p . For 
incompressible flows, the viscous stress terms are 
expressed as m= Ñg g gτ v  and m= Ñf f fτ v .  
 
2.2 Turbulence Model 
 

The standard e-k  transport equations are solved to 
obtain fk  (turbulence kinetic energy) and e f  (viscous 
dissipation rate). The constants have been obtained 
through comprehensive data fitting for a wide range of 
turbulent flows[8]: 0.09m =C , 1.0s =k , 1.4es = , 

1 1.44e =C , and 2 1.92e =C . The shear production term 

is given by m= ÑT
f f fP v . The Reynolds stress of the gas 

phase is calculated as 
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For the turbulent shear stress, liquid (or gas) shear-

induced turbulence ( ,m mT T
f g ) model is used. The 

kinematic turbulence viscosities of gas and liquid are 
assumed to be equal[8]. 
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2.3 Interfacial Momentum Transfer 

 
The interfacial momentum transfer term, if  is used a 

simple model of Ishii[9] and Yoneda[10]. 

1 | | ( )
8

r= - -
r r r r

i i g D g l g lA C u u u uf ,                        (12) 

where the interfacial drag coefficients DC  are defined 
by Ishii[9] for the bubbly flows. To define the Reynolds 
number, Yoneda[10] model is applied for the Sauter 
mean diameter. 
 

3. Simulation 
 

3.1 Problem Definition 
 

Figure 1 shows a channel flow in two dimensions. 
Flow goes into the pipe from the lower part and goes 
out of the pipe through the upper part as presented in 
Fig. 1. The other faces of the pipe are closed by walls. 
No gravity condition is assumed. The pipe has 0.02 m 
width and 1.00 m height geometry. 

 
outlet

inlet

wall wall

 
Fig. 1. Turbulent flow in a two-dimensional channel. 
 
Table I contains the test cases to show the validity of 

the governing equations. All test conditions are based 
on two-phase water under 0.5 MPa, saturated 
temperature and 5 % void fraction. Three test cases are 
defined by the Reynolds numbers. According to the 
Reynolds number, the inlet velocity condition is 
calculated as presented in Table I. The standard k-e 
turbulence model is used. 

 
Table I: Test Matrix 

 case1 case2 case3 
Pressure 0.5 MPa 0.5 MPa 0.5 MPa 
Temperature Saturated Saturated Saturated 
Re 1000 13600 70000 
y+ - 57 216 
Inlet ag 0.05 0.05 0.05 
Inlet Velocity 0.00984 0.1338 0.6886 
Turbulence - k-e k-e 
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3.2 Results 
 

Figure 2 shows the velocity distribution at outlet for 
case1 (Re=1000). Because the geometry is sufficiently 
long, the velocity distribution shows fully developed 
flow.  Fig. 2a is the result of the conventional two-fluid 
momentum equation, which solves the dispersed phase 
as continuous matter. In Fig. 2a, the gas velocity (Vg) is 
faster than the liquid velocity (Vl). Physically this result 
is incorrect. Without gravity and the other turbulent 
viscous forces, there is no reason to make gas flows 
faster than liquid in this horizontal pipe. Figure 2b show 
the results of Eq. (5)~(6). Velocities of gas and liquid 
became identical. 

Figure 3 shows the velocity distribution at outlet for 
case2 (Re=13600). Because the flow is turbulent, k-e 
model is applied with the wall function. Fig. 3a is the 
result of the conventional two-fluid momentum equation. 
In Fig. 3a, the gas velocity (Vg) is faster than the liquid 
velocity (Vl). Figure 3b show the results of Eq. (5)~(6). 
In this case, the velocity of gas phase is still faster since 
Reynolds viscous stress is influencing on the velocity. 
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(b) Fluid Particle-based 

Fig. 2. Velocity distribution for case1. 
 

Figure 4 shows the velocity distribution at outlet for 
case3 (Re=70000). Likewise Fig. 2, the k-e model is 
used for case3, Figure 4a is the result of the 
conventional two-fluid momentum equation. In Fig. 4a 
and 4b, the gas velocity (Vg) is faster than the liquid 
velocity (Vl). 

x (m)

V
g,

V
l(

m
/s

)

0 0.005 0.01 0.015 0.02
0

0.04

0.08

0.12

0.16

0.2

Vl
Vg

 
(a) Conventional 

x (m)

V
g,

V
l(

m
/s

)
0 0.005 0.01 0.015 0.02

0

0.04

0.08

0.12

0.16

0.2

Vl
Vg

 
(b) Fluid Particle-based 

Fig. 3. Velocity distribution for case1. 
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(b) Fluid Particle-based 

Fig. 4. Velocity distribution for case3. 
 
3.3 Discussion on the velocity difference 
 

In Fig.2, the result from the fluid particle-based 
approach shows the identical velocity profile between 
the liquid and gas phase. This is the effect of viscous 
shear stress apportioned from the background field (here 
it is the liquid field). In this case the Reynolds stress is 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 7-8, 2015 

 
zero. However, Figs. 3-4 show different velocity 
profiles even when the fluid particle-based two-fluid 
momentum equation owing to the Reynolds stress effect. 
Because the Reynolds stress term is originated from the 
convective term, it cannot be erased as the viscous shear 
stress is erased in the fluid particle-based derivation. 
This result is different from the result of the one-
dimensional two-fluid momentum equation based on the 
fluid particle-based derivation, in which the Reynolds 
stress term is modeled as the viscous shear stress model 
so that the velocity profiles became identical in 
turbulent flow cases.  

As for the Reynolds stress term, it is also a modeled 
force. Thus, the term can be modified to correct the 
velocity profiles to be identical by modeling. For the 
modeling, the Reynolds stress term can be treated as the 
viscous shear stress. 

 
3. Conclusions 

 
In this study, the conventional and fluid particle-

based two-fluid momentum equation were investigated 
with the multi-dimensional two-phase code, CUPID. 
The conventional two-fluid momentum which assumes 
the shear forces of the dispersed phase as the matter of 
continuum showed unphysical momentum increase on 
disperse phase. This issue in laminar flow cases was 
solved by the modified momentum equation which uses 
the shear forces as the form of the partitioned viscous 
force of surrounding fluid according to void fraction of 
each phase. Furthermore, turbulent cases are tested and 
the results are different from the one-dimensional 
approaches in which the Reynolds viscous stress is 
expressed in terms of the laminar viscosity. 
Consequently, in solving two-fluid momentum equation, 
the fluid particle-based form cannot correct the disperse 
field to be identical. Finally, a model for the Reynolds 
stress is suggested. 
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