
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

Quantification of Safety-Critical Software Test Uncertainty

M. Khalaquzzaman, Jaehyun Cho*, Seung Jun Lee, Wondea Jung

Integrated Safety Assessment Division, Korea Atomic Energy Research Institute
1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, Korea

E-mail: kzaman74@gmail.com; sjlee@kaeri.re.kr; wdjung@kaeri.re.kr
*Corresponding author: chojh@kaeri.re.kr

1. Introduction

Software failure probability is quantified based on

test results. Usually, the types of testing performed for
software reliability estimation are the debug testing,
operational testing, so on. The operational profile-based
testing is recognized to be more effective and
economical [4] than other testing options. In operational
profile-based testing, the test cases are prioritized based
on the probability of uses [2, 18]. An input profile-
based testing follows the operational profile in which
the most probable input must be tested first, and the
least probable input comes in the last.

The input-profile based testing for quantification of
the failure probability of NPP safety critical software
was proposed in [1]. The method, conservatively
assumes that the failure probability of a software for the
untested inputs is 1, and the failure probability turns in
0 for successful testing of all test cases. However, in
reality the chance of failure exists due to the test
uncertainty.
 Some studies have been carried out to identify the

test attributes that affect the test quality. Cao discussed
the testing effort, testing coverage, and testing
environment [3]. Management of the test uncertainties
was discussed in [5, 6]. BBN based modeling for
evaluating the software engineering uncertainty was
proposed in [7, 8].

In this study, the test uncertainty has been
considered to estimate the software failure probability
because the software testing process is considered to be
inherently uncertain. This paper discusses the software
test uncertainty quantification employing a Bayesian
belief network. An example for quantification of RPS
software failure probability considering the
uncertainties is presented.

2. Uncertainties in Software Testing

Software test activities are performed in a

computing environment to identify the discrepancies
between the actual capability and the desired capability
of a software [9, 7]. These activities are mainly
categorized into two groups, test planning and test
enactment. Although both categories of tasks are known
to be error prone, the test enactment is identified to be
inherently uncertain because the numbers of test cases
are usually limited and the test environment is not ideal
[8].

The uncertainties introduced by the elements of the
automated test activities are the intended system to be
tested, the test platform, the test cases, the tools, and the
administrator [10]. Because uncertainties emerge from
multiple factors relevant to the test activities and
environment, they should be taken into account for
quantification of the software test reliability. The major
causes of test uncertainty are discussed below.

 Test planning activities

Software test planning is usually carried out at the
early stage of the software development phase. A
software test plan includes all of the necessary testing
activities, allocation of roles, responsibilities, and
resources including the overall schedule [16]. Test
planning is error prone because the tasks are mostly
human intensive. The identified test planning tasks
from which the uncertainties are emerged are artifacts,
planned test activities, and the plans themselves.

 Selection of Test Cases

 “Test cases are a set of test inputs, executions and
expected results developed for their objectives such as
to exercise a particular program path or to verify
compliance with a specific requirement” [11]. The test
case selection is the activity of choosing a finite set of
elements to be tested out of a typically infinite number
of test elements. A test case is to determine the
appropriateness of the software features [12, 8, 13].

Test cases should be described in a simple manner
so that the team members do not become confused
during the execution and finding any defects. The
effective test case developing techniques are a gradual
learning process. Extensive experience in addition to in-
depth understanding of the program structure is desired
to achieve the skills of test case development. Thus,
plenty of domain knowledge, technology knowledge,
and testing practices are essential for designing and
generating effective test cases [13].

It can be recognized that the uncertainty emerged
from the development of test cases are influenced by (i)
the selection of finite test cases among an infinite
number of test elements [8], and (ii) the
shortcomings/limitations of test case designers.

 Test Execution

Each of the selected test cases is manifested through
the execution of the software by employing test systems
and examining the test results to see whether a test

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

passed or failed. The proper execution of testing is
essential for achieving the objectives of software testing.
The test environment should be identical to the live
environment for an effective execution of the test cases
[3].

 Software Test Environment

 The software test environment plays a vital role in
achieving the goal of testing. For an effective testing,
the test environment should be identical to the live
environment [3]. However, in reality, the test
environment mostly differs from the actual operating
environment.
 The degree of difference between the software test
environment and actual operating environment
increases the uncertainty in successful testing. Although
uncertainty control is a major goal in software quality
assurance, the full control of execution uncertainty
remains unfeasible for the complex units of the
software under testing. In particular, the aleatoric
uncertainties cannot be precisely determined. The
epistemic uncertainties can be resolved by spending
adequate effort [6]. The aleatoric uncertainties are
related to natural variability and the epistemic
uncertainties are related to the lack of knowledge [14].
It becomes very difficult to rely on the test results when
significant uncertainty exists. The development of
sophisticated oracles is considered to be a
complementary way of dealing with uncertainty.

 Software Test Resources

Software test resources play an important role to
achieve a quality testing. The major components of
software test resources include the test equipment and
human resources.

- Test Tools
The development or selection of an appropriate tool

for testing of the software is essential to effectively
conduct the testing. The major factors relevant to the
test tools that introduce uncertainty are
incompatibility and complexity of the tools for the
intended software testing, test platform, and
recognition of technology.

- Competent staff
 The number of persons available and their education,
knowledge, experience, training and expertise play key
roles for an effective test design and execution of the
test cases. The deficiency in the qualification of the
testing staff can introduce a significant level of
uncertainty over successful testing software.

3. Uncertainty Quantification

The proper assessment of test uncertainty leads to a

better estimation of the software failure probability.
Quantifying the test uncertainties through an evaluation
of the entire testing process, test platform, the tools, test
resources and environment is necessary. The BBN,

through this study, has been proposed for software test
uncertainty quantification more explicitly considering
the underlying factors that influence the test quality.
Research reports, regulatory standards and guidelines
are reviewed to identify influential attributes that can
affect the software test quality. For instance, the US
NRC report BTP-7-14 (2007) [15] discusses the
characteristics of the software development life cycle
process and can be used for identifying important
attributes. The major attributes related to the testing are
presented in Table 1. For a consideration of the set of
weighting factors, it will be worthwhile to develop the
model reflecting the impacts of the attributes differently
because in reality the attributes have different
characteristics and influence the quality of testing.

Table 1 Attributes of software test quality

Attributes Weighting Factor
Test Activities

- Planning

wa1

- Management wa2
- Measurement wa3

- Test case development wa4
- Test execution wa5

- Result checking wa6
Test Resources and
Environment

- Tools (hardware and
software)

wt

- Environment we
 Human Resource

- Education wed
- Knowledge wk
- Training wt
- Experience wex

Example

 A BBN model consisting of the software test quality
attributes was constructed and the test uncertainty was
quantified based on the assumed input data. The
example model consisting of two interconnected
subnets are shown in Fig. 1 – Fig. 3. In this calculation,
it was assumed that the 10% deviation of the attributes
from the desired level would lead to a complete test
failure. Our model shown in Fig. 1 represents the
structure of a BBN for an evaluation of the test
activities and Fig. 2 represents the structure of a BBN
for the test resources and test environment. The
structure of the net to estimate overall uncertainty is
shown in Fig. 3.
 The commercial BBN tool, AginaRisk, was
employed for constructing the example network in
which the attributes were represented as ranked nodes.
Ranked nodes are used for measuring the states of
discrete variables on a subjective scale, i.e., low,
medium, and high. The states of ranked nodes are
expressed on an ordinal scale of 0-1[19, 17].

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

Fig. 1 Model for assessing of software test activities

Fig. 2 Model for evaluation of software test resources and environment

Fig. 3 Overall test uncertainty

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

4. Software Failure Probability Estimation

The probability of software failure after nth testing has
been estimated. Software test cases are prepared using
specific input values. If the probability of a specific
input is p, then the probability of software failure (φ)
for the successful testing of the first test case can be
estimated considering the test uncertainty (σ1) as
follows

φ1 = 1-(1-σ1) p1………………… (1)

Similarly, the equation for a software failure probability
after a series of successful testing can be derived as
presented in Table 2.

Table 2 Software reliability after nth test

nth
Test

Input
Probability

Software failure probability
after nth test

0 - 1
1 p1 φ1 =[1- p1-σ1p1] ……..(1)
2 p2 φ2 = [1- p1 - p2 + σ1p1 + σ2

p2]…(2)
……. …….. ……………………..

k pk φi = [1- p1 -p2 - …+ σ1p1 +
σ2p2 + …+ σkpk].…..(3)

…….
.

………….
.

………………………

n pn φn = [1- p1 - p2 - …+ σ1p1 + σ2
p1 + …+ σnpn]……(4)

σ- test uncertainty, φ - software failure probability
after certain test, p - software input probability

After completion of the nth test, the ultimate failure

probability, φn can be expressed in the following form.

In Eq. (5), the second term in the right-hand side is
the coverage of test cases that tends unity for a very
large number of test cases. The third term expresses the
accumulated test uncertainties, which seems to be non-
zero because an ideal test environment is infeasible.

5. Discussions

The quality of software test processes and the test
environment play vital roles in software failure
probability quantification based on test results. Thus,
the entire test process along with the test environment
should be thoroughly evaluated and taken into account
in software reliability quantification. This study
proposes the BBN model for software failure
probability estimation considering the test uncertainties.
Hence, the following points important to discuss.

 A software test uncertainty estimation can be
performed simply through expert judgment, using

matrices, or statistical tools like a Bayesian belief
network. However, the use of a BBN model is
emphasized since the approach is capable of assessing
the underlying causes establishing relations between the
causes and effects.

 The BBN structure can be constructed using a
converging connection or diverging connection. In our
example, a converging connection has been chosen
because the parent nodes are conditionally independent.
The intermediate nodes (the nodes between the root
nodes and leaf node) are used in the structure to make
the node probability table (NPT) editing task easier. The
NPT of the root nodes can be built through a qualitative
assessment (e.g. High, Medium, and Low) by experts.

 The attributes have a different level of influence on
the test uncertainty. Thus, different weighting factors
should be considered for each of the attributes while
preparing the node probability table of a BBN. BBN
parameters and the structure of the network should be
prepared by appropriately reflecting the influences of
all test activities, test platform, and environment. The
scale of the weighting factors should be determined by
experts.

 The main challenge is determining the prior
probability distribution of the BBN; however, expert
elicitation along with historical test failure data related
to safety and non-safety software can be used for a
prior probability estimation.

 The approach for a software failure probability
estimation presented in section 4 considers the test
uncertainty and probability of inputs. If only a fraction
of test cases are executed then a factor relevant to the
test coverage should be included in the calculation.

6. Conclusions

A reliability estimation of software is very
important for a probabilistic safety analysis of a digital
safety critical system of NPPs. This study focused on
the estimation of the probability of a software failure
that considers the uncertainty in software testing. In our
study, BBN has been employed as an example model
for software test uncertainty quantification. Although it
can be argued that the direct expert elicitation of test
uncertainty is much simpler than BBN estimation,
however the BBN approach provides more insights and
a basis for uncertainty estimation. Our study is expected
to provide an option for a reliability estimation of safety
critical and non-safety software in the nuclear power
industry.

Acknowledgement

This work was supported by Nuclear Research &

Development Program of the National Research
Foundation of Korea grant, funded by the Korean

)5...(....................

n

1i
ii

n

1i
in pσp1

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

government, Ministry of Science, ICT & Future
Planning (Grant Code: 2012M2A8A4025991).

REFERENCES

[1] H. G. Kang, H. G. Lim, H. J. Lee, M. C. Kim, S. C. Jang,

“Input-profile-based software failure probability
quantification for safety signal generation systems,”
Reliability Engineering and System Safety, 94, pp.
1542–1546, 2009.

[2] Musa JD, The operational profile in software reliability
engineering: an overview. In: Third International
Symposium on Software Reliability Engineering,
October 1992.

[3] Cao, P., Tang, G., Zhang, Y., Luo, Z., 2014. Qualitative
Evaluation of Software Reliability Considering Many
Uncertainty Factors. Ecosystem Assessment and Fuzzy
Systems Management, Advances in Intelligent Systems
and Computing 254, DOI: 10.1007/978-3-319-03449-
2_20, Springer International Publishing Switzerland
2014. Page 199-205.

[4] Li, N. Malaiya, Y.K., “On Input Profile selection for
software testing,” In: Proceedings of 5th International
Symposium on Software Reliability Engineering
(ISSRE’ 94), IEEE computer society, Los Alamitos, CA,
pp. 196-205, 1994.

[5] Rees, K., “Managing the uncertainties of software
testing: a Bayesian approach,” Proceedings 14th
Advances in Reliability Technology Symposium,
Manchester, November 2000.

[6] Elbaum, S., Rosenblum, D.S., “Known Unknowns:
Testing in the Presence of Uncertainty,” FSE’14 , Hong
Kong, China, November 16–22, 2014.

[7] Ziv, H., Richardson, D.J., Khosch, R., The Uncertainty
Principles in Software Engineering. Technical Report
96-33, University of California, Irvine, CA, USA,
August 1996.

[8] Ziv, H., Richardson, D.J., 1997. Constructing Bayesian-
network Models of Software Testing and Maintenance
Uncertainties. The Proceedings of International
Conference on Software Maintenance, September 1997,
IEEE.

[9] A. L. Goel. “Software reliability models: Assumptions,
limitations, and applicability,” IEEE Transactions on
Software Engineering, SE-11(12):1411-1423, 1985.

[10] Naik, K. and Tripathy, P., Software Testing and Quality
Assurance, Theory and Practice. John Wiley & Sons,
Inc. Hoboken, New Jersey, 2008.

[11] IEEE, 2012. IEEE Standard for System and Software
Verification and Validation. IEEE Std. 1012-2012.

[12] Cem Kaner, J.D., “What Is a Good Test Case?” Florida
Institute of Technology Department of Computer
Sciences, May-2003.

[13] Singh, R., 2014. Test case generation for object-
oriented systems: A review. The Proceedings of Fourth
International Conference on Communication Systems
and Network Technologies, 2014 IEEE. P 981-989,
DOI 10.1109/CSNT.2014.201.

[14] Urbina, A. and Mahadevan, 2010. Quantification of
Aleatoric and Epistemic Uncertainty in Computational
Models of Complex Systems. Proceedings of the
IMAC-XXVIII February 1–4, 2010, Jacksonville,
Florida USA.

[15] BTP-7-14, 2007. Guidance on software review reviews

for digital computer-based instrumentation and control
systems. NUREG-0800, Standard Review Plan: Branch
Technical Position 7-14, Revision 5. U.S. Nuclear
Regulatory Commission, 2007

[16] Eickelmann, N.S. and Richardson, D.J., 1996. An
Evaluation of Software Test Environment Architectures.
The proceedings of ICSE-18, IEEE.

[17] Fenton N. E., Neil, M., Risk Assessment and Decision
Analysis with Bayesian Network, 2012.

[18] H. Koziolek, “Operational Profiles for software
reliability,” Seminar ‘Dependability Engineering”, Carl
von Ossietzky University of Oldenburg, Germany, July
2005.

[19] Fenton, N. E., Neil, M., Caballero, J.G., 2007, “Using
Ranked Nodes to Model Qualitative Judgments in
Bayesian Networks,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 19, No. 10.

