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1. Introduction 
 

In recent years, 3-D whole-core transport calculation 
is drawing an increasing interest in reactor analysis due 
to the needs of accurate solution and the increase of 
computing power. But, a direct 3-D transport calculation 
without spatial homogenization still requires a huge 
computational burden. To deal with 3-D heterogeneous 
reactor problems avoiding a direct 3-D calculation, a 2-
D/1-D fusion method [1–3] was developed at KAIST. 
This method employs 2-D MOC calculation in the radial 
direction and 1-D SN calculation in the axial direction. 
The 2-D/1-D fusion method gives accurate transport 
solutions for several 3-D reactor problems. On the other 
hand, a hybrid method which employs 2-D MOC 
calculation in the radial direction and 1-D diffusion (or 
diffusion-like) approximation in the axial direction was 
developed by another research group [4, 5]. The above 
method gives more accurate solution than diffusion 
calculation, but there is some difference from transport 
solution due to the 1-D diffusion approximation.  

Although the methods were developed a few years ago, 
the question of the stability of the methods was not 
answered satisfactorily. In [6, 7], it is reported that the 
latter method [4, 5] exhibits unstable behavior for small 
axial mesh sizes and that this behavior can be resolved 
by under-relaxation. But additional studies are necessary 
because there is no axial calculation scheme in [6, 7]. 
Moreover, the convergent result is not the same as the 
transport solution [7]. For the 2-D/1-D fusion method, 
only a refinement sensitivity study via numerical 
calculation is available in [8]. 

This paper presents the stability of the above methods 
via Fourier stability analysis (FSA). The conditions of 
convergence are also verified.  

 
2. Theory and Methods 

 
In this section, the two methods; transport-transport 

calculation and transport-diffusion approximation are 
briefly described. 

 
2.1 Basic Assumptions 

 
A goal of this paper is the verification of relations 

between the stability and the axial mesh size. To 
concentrate and achieve the goal, the following 
simplifications which do not harm the convergence 
properties are introduced. 

First, a 2-D transport equation is considered by 
reducing one dimension in the radial direction (now, 
“radial” is changed into “horizontal”, “axial” is changed 
into “vertical”). Second, horizontal fine meshes are very 
small so that the spatially continuous equation is 
considered in the horizontal direction. 

 
2.2 Transport-Transport Calculation 
 

Let us first consider a one-group neutron transport 
equation on 2-D infinite homogeneous medium with 
isotropic scattering: 
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The equations of a 2-D version of 2-D/1-D fusion method 
(denoted “transport-transport”, “TT”) are obtained by 
splitting of directional operators and directional 
integration: 
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 and k is the 

vertical mesh index. The above equations are iterative 
between the horizontal and the vertical calculations. 
Because the equations (2) and (3) are solved by transport 
methods, the result is a 2-D solution based on the 
transport equation. An auxiliary discretization scheme is 
necessary for the vertical equation (3). The present paper 
uses three schemes; diamond difference (DD), step 
characteristic (SC), and linear characteristic (LC). 
 
2.3 Transport-Diffusion Approximation 

 
In [6], the vertical transport leakage term in Eq. (1) is 

approximated by diffusion leakage and it moves to the 
right hand side. The resulting equation is  
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The vertical integration of Eq. (4) becomes 
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which is the horizontal equation to be solved. 

There is no vertical calculation in [6] (will be denoted 
“Half TD”). The present paper uses an additional 
equation for vertical calculation (denoted “Basic TD”): 
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(6) 

 
The above equations (5) and (6) are iterative between the 
horizontal and the vertical calculations. Because the 
diffusion leakage source is used in the equation (5) and 
the equation (6) is solved by the diffusion method, the 
result is not a 2-D transport solution, although it should 
be more accurate than 2-D diffusion approximation. 

 
3. Stability Analysis 

 
In this section, the applications of FSA to the two 

methods are described. Let us set the following Fourier 
ansatz [6]: 
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Substituting Eq. (7) into the governing equations, the 
spectral radius can be obtained. The stability and the 
convergence rate are determined by the spectral radius. 

 
3.1 Transport-Transport Calculation 

 
The spectral radii of the transport-transport calculation 

are obtained as follows: 
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where c is the scattering ratio. The spectral radius of TT 

with the DD scheme is equal to 1. For the SC scheme, 
the iteration is stable and converging because the spectral 
radius is less than 1. For the LC scheme, there is no 
explicit solution, but implicitly given: 
 

 TT(LC) max , ,c                             (10) 
 
where eigenvalue   satisfies the following eigenvalue 
equation: 
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Fig. 1 is a comparison of FSA theoretic results (th) and 

numerical results (num) of the transport-transport 
calculation. Numerical calculation is performed under 
the following conditions; S8, fixed number of cells 
(200×200), fixed horizontal-direction cell size (0.1cm), 
and periodic boundary condition. 

Numerical results are close to the FSA theoretic results 
except for the LC scheme. The difference between FSA 
theoretic result and numerical result for the LC scheme 
is not significant. For the DD scheme, the convergence 
speed is very slow, almost neutrally stable. For the SC 
and the LC schemes, the spectral radii are close to 1 for 
small vertical mesh sizes. But the transport-transport 
calculation (and 2-D/1-D fusion method implied) with 
the SC and LC schemes is unconditionally stable because 
the spectral radius is less than 1.  

 

 
 
Fig. 1. Spectral radii of the transport-transport calculation (c = 
0.5). 

 
3.2 Transport-Diffusion Approximation 
 

The spectral radii of the transport-diffusion 
approximation are obtained as follows: 
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Basic TD diverges if the scattering ratio is larger than 

0.5. It is a serious problem (worse than Half TD in [6]). 
To resolve the above problem, the present paper 
proposes the scattering source update in the vertical 
calculation (denoted “Scattering TD”): 
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that is a modification of Eq. (6). The spectral radius is 
then changed to  
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which says that Scattering TD is unconditionally stable. 

Fig. 2 is a comparison of FSA theoretic results (th) and 
numerical results (num) of the transport-diffusion 
approximation. The conditions of numerical calculation 
are the same as those of TT calculation. 

Numerical results are close to the theoretic results of 
FSA. In Fig. 2, Basic TD shows neutral stability. But if 
the scattering ratio is larger than 0.5, Basic TD becomes 
unstable. Half TD is also unstable for small vertical mesh 
sizes. For the Scattering TD, the spectral radius increases 
as the size of vertical mesh decreases. But the Scattering 
TD is unconditionally stable because the spectral radius 
is still less than 1.  

 

 
 

Fig. 2. Spectral radii of the transport-diffusion approximation 
(c = 0.5) 

 
 
 
 
 

4. Conclusions 
 

In this paper, the Fourier stability analysis of the 
transport-transport calculation (2-D/1-D fusion method) 
and the transport-diffusion approximation (2-D transport 
and 1-D diffusion approximation) is presented. The 
transport-transport calculation is unconditionally stable 
for vertical (axial) SC and LC schemes. The transport-
diffusion approximation exhibits unstable behaviors. To 
resolve this instability problem, scattering source update 
in the vertical calculation is proposed in this paper.  

The related topics of acceleration and modular cell 
homogenization are not considered in this analysis, that 
are left as future studies. 
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