Thermal Conductivity of Metallic Micro-Cell Fuel Pellet with Different Unit Cell Geometry

Heung Soo Lee^a, Dong-Joo Kim^b, Sun Woo Kim^a, Jae Ho Yang^b, Yang-Hyun Koo^b, Dong Rip Kim^{a*}

^a School of Mechanical Engineering, Hanyang University, Seoul, 133-791, South Korea

^b LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353, South Korea

^{*}Corresponding author: dongrip@hanyang.ac.kr

1. Introduction

Increasing the thermal conductivities of nuclear fuel pellets can relieve the severe temperature gradients across the pellets, which can improves the reliability and safety of nuclear fuel [1, 2]. Recently, the metallic micro-cell pellets have been successfully fabricated to increase the thermal conductivities of nuclear fuel pellets with the minimal inclusion of thermal conductive materials (e.g., Mo, W, Cr, etc.) to $UO_2[3, 4, 5]$. Here we numerically characterize the effects of the geometry, such as the size and the aspect ratio, of the UO_2 -Mo micro-cells on their thermal conductivities.

2. Simulation model

The unit UO_2 -Mo micro-cell of the fuel pellet was simplified to the two-dimensional rectangular shape as shown in Figure 1. The UO_2 was enclosed by the Mo with the uniform thickness. To quantify the micro-cell shape, the aspect ratio (AR) was defined as the ratio of the length (*L*) in the heat flux direction to the length (*H*) normal to the heat flux direction. The contents of Mo in the UO_2 -Mo micro-cells were fixed as 5 vol% in this study. The properties of thermal conductivities of UO_2 and Mo were adopted from MATPRO and CRC Handbook [6, 7].

Figure 1. Schematic of a simulation model for the $\mathrm{UO}_2\text{-}\mathrm{Mo}$ micro-cells.

Boundary conditions were applied to the model as follows: constant heat flux (q'') to the left side, constant temperature (T_2) to the right side, and symmetric boundary conditions to the top and bottom sides. The steady-state heat conduction equation was solved. The numerical simulation was carried out by using the commercial software (Comsol Multiphysics®) to determine the temperature (T_1) .

The effective thermal conductivities (k_{eff}) of the microcells were computed by using Fourier heat equation (eq 1) as follows:

$$k_{eff} = q'' \frac{L}{(T_1 - T_2)}$$
 (1).

3. Result and discuss

3.1 Effects of the micro-cell sizes on their thermal conductivities

The effects of the micro-cell size on the thermal conductivity of the UO₂–Mo pellet fuel were investigated. The micro-cell size increased from 100 to 500 μ m, while their aspect ratio was held constant as 0.5. The thermal conductivity had no change with varying the micro-cell sizes (Figure 2). The numerical results agreed well with the experimental results within an error of 8.0%. As the micro-cell size increases under the same aspect ratio, the increase of the thermal resistance by increasing the length (*L*) of the micro-cell was exactly compensated by the decrease of the thermal resistance by increasing the height (*H*).

Figure 2. Size effects of the micro-cells on thermal conductivities at 300° C, 800° C, and 1200° C.

3.2 Effects of the micro-cell aspect ratios on their thermal conductivities

Increasing the aspect ratios of the micro-cells under the same contents of the Mo in UO₂ significantly increased their thermal conductivities (Figure 3). This also matched well with the experimental data within an error of 7.9%. The increase in the aspect ratio of the micro-cells resulted in the fast reaching of the thermal equilibrium across the height of the micro-cell (*i.e.*, the decrease of the thermal resistance of the micro-cell), which outweighs the increase in the thermal resistance of the cell.

Figure 3. Thermal conductivity of the micro-cells in terms of aspect ratio at temperature of $800\,^\circ$ C.

4. Conclusion

The geometric effects of the metallic (UO₂-Mo) microcells on their thermal conductivities were numerically investigated in terms of the size and the aspect ratio of the micro-cells. Our simulation results agreed well with the experimental measurements. Under the same contents of the Mo in the UO₂, changing the sizes of the micro-cells did not vary their thermal conductivities as long as their aspect ratio was fixed. However, increasing the aspect ratio of the micro-cells greatly increased their thermal conductivities. The UO2-Mo micro-cells with the Mo of 5 vol% and the aspect ratio of 2.0 can increase the thermal conductivities of the UO_2 pellets by 2.1 times at 800°C, which has the potential of the significant improvement in the reliability and the safety of the nuclear fuel by decreasing the maximum temperature of the pellet.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2014M2A8A5022140).

REFERENCES

[1] Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accident-tolerant fuel, Journal of Nuclear Technology, 186, 295-304, 2014.

[2] K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents, Journal of Nuclear Materials, 448, 512, 2014.

[3] J.H. Yang, K.W. Song, K.S. Kim, Y.H. Jung, A fabrication technique for a UO_2 pellet consisting of UO_2 grains and a continuous W channel on the grain boundary, Journal of Nuclear Material, 202, 353, 2006.

[4] S.H. Kim, C.Y. Joung, H.S. Kim, Y.W. Lee, H.J. Ryu, D.S. Sohn, D.J. Kim, Fabrication Method and Thermal Conductivity Assessment of Molybdenum-precipitated Uranium Dioxide Pellets, Journal of Nuclear Material, 352, 151-156, 2006.

[5] D.-J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.-H. Koo, K.-W. Song, Fabrication of Micro-cell UO₂-Mo Pellet with Enhanced Thermal Conductivity, submitted, 2014.

[6] C.M. Allison et al. SCDAP/RELAP5/MOD3. 1 code manual, volume IV: MATPRO–a library of materials properties for light-water-reactor accident analysis. Technical Report NUREG/CR-6150, EGG-2720, Idaho National Engineering Laboratory, 1993.

[7] D.R. Lide, W.M. Haynes, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC Press, 2011.