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1. Introduction 

 
The Launder-Sharma model was selected as the best 

model to predict the heat transfer performance while 
offsetting the lack of accuracy in even recently updated 
empirical correlations from both the extensive review of 
numerical analyses and the validation process [1] [2].  

 
An application of the Launder-Sharma model into the 

system analysis code GAMMA+ for gas-cooled 
reactors is presented: 1) governing equations, 
discretization, and algebraic equations, 2) an 
application result of GAMMAT, an integrated 
GAMMA+ code with CFD capability of low-Re 
resolution incorporated. 

 
 

2. Methodology 
 
2.1 Governing equations 

 
Reynolds-Averaged Navier-Stokes (RANS) [3] 

equations in the conservative were selected as the set of 
equations governing the conservation of the mass, 
momentum, and energy for a single phase and single 
component.  

The entire set of numerical methods, except for the 
model of turbulence, is identical to that implemented in 
the original system code GAMMA [4] and GAMMA+ 
[5]. The essentials for the model of turbulence will be 
explained for a fundamental understanding. Moreover, 
the details are expanded for a numerical analysis in a 
formula for a simplified single component instead of a 
multi-component situation, as in the original code. 
However, the matrix includes all elements. 

The Reynolds stress is expressed in the turbulent 
shear stress as a product of the turbulent viscosity and 
mean rate of strain, as proposed by Boussinesq [3]. 
Options [6] to describe this turbulent viscosity are very 
wide depending on required level of complexity and 
cost. Here, the L-S model [7][8] of turbulence with two 
equations for k-ε was selected according to the issues 
that arise with the use of a system code. 

Compared to the original “standard k-ε” model [9], 
the added function is a specific function to consider the 
damping effect near the wall [7] 

The quantities of turbulence, i.e., the turbulent 
kinetic energy and the turbulent kinetic energy 
dissipation rate, the turbulent thermal conductivity used 
in the energy equation as equation was obtained using 
the Reynolds analogy [3] between the momentum 
transfer and heat transfer. 

Approaching the viscous wall layer, this assumes a 
constant value of 0.87. Frequently, this value is 
assumed for the entire fully turbulent outer layer (for Pr 
> 0.5). When Pr is much larger or smaller than unity, 
this assumption no longer holds. However, because air 
or helium gas, the working gas in a GCR such as a GFR 
or a HTGR, has a Prandtl number near unity, the 
assumption is that a constant turbulent Prandtl number 
over the entire domain can be used. 

 
2.2. Discretization 
 

The governing equations are discretized in a semi-
implicit manner in the staggered layout [10]. For a fast 
computation, the Revised Implicit Continuous fluid 
Eulerian (ICE) technique [11] rather than the original 
ICE technique [12] is adopted to reduce a nNnN 
matrix to an 1N1N pressure difference matrix (n: # of 
equations, N: size of meshes). 

All of the equations for conservation are discretized 
as follows: 
 
Turbulent kinetic energy: 
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Turbulent kinetic energy dissipation rate: 
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Here, a bar (-) indicates the averaged property and a 

dot () indicates the donored property which depends on 
the flow direction. In a staggered mesh, ‘i’ is the index 
of a scalar cell and ‘j’ is the index of a momentum cell. 

 
A forward time scheme was used with first-order 

accuracy in time. In addition, a donor scheme and a 
centered scheme were selected for convective terms and 
diffusion terms, respectively: (1) the donor scheme has 
first-order accuracy in space but feasible performance 
when considering the inherent characteristics of the 
phenomenon for the convective term. It is also 
advantageous for convergence. The (2) centered 
scheme with second-order accuracy was selected as it is 
recommended for a flow with a relatively low Reynolds 
number for stability and accuracy [11] 
 

2.3. Linearization 
 

The set of nonlinear governing equations was 
linearized by the Newton method [12], which is a 
powerful technique for solving non-linear equations as 
in the earlier set of equations. 

 
Scalar variables of dependent variables such as the 

density, enthalpy, turbulent kinetic energy, and 
turbulent kinetic energy are treated implicitly and are 
linearized: 
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2.4. Algebraic equations 
 

By inserting linearized variables (
1 1 1 1, , ,  n n n n

i f i i iT k    

) 

and 
1n

j
u  into the discretized scalar equations, and then 

combining the resulting equations into a linear 
algebraic form, a 99 square matrix (considering 5 
members of species) is obtained: 
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T
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As a result, the first row becomes a pressure-only 
N×N matrix with diagonal dominance: 

' ' ' ' '
1 1 1 1 1 1 11i i i

i i i i i

d P d c P c P b   
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   

 

This pressure matrix can be solved by any direct 
method, such as Gaussian elimination. The remaining 
rows regarding the temperature, turbulent kinetic 
energy, and turbulent kinetic energy dissipation rate are 
simply expressed as a function of only the pressure: 
 

2.4. Numerical domain, meshes, and boundary 
conditions 

 
Before presenting the results from the numerical 

analyses, the numerical domain and the terminology in 
grid system will be explained and all calculations 
presented in the following part are based on these 
definitions. 

 
The numerical calculation domain is a simple pipe in 

axi-symmetric coordinate system as in Figure 1 with 
boundary conditions such as uniform inflow, Neumann 
condition at outflow, axis of symmetry, and no slip 
boundary condition at wall (imposed as adiabatic wall 
or heat flux in heat transfer). The distance from inlet to 
outlet is defined as L, and the diameter is defined as D: 
since axi-symmetric coordinate is used, radius, D/2 is 
used for actual numerical domain. 
 

The diameter, D is fixed to be 0.2 m because of 
simplicity (radius, D/2 is 0.1). And the axial distance, L 
is controlled according to the entrance length that is 
required for flow entering a pipe with uniform velocity 
to be fully developed since boundary condition at outlet 
is imposed as Neumann condition (gradient boundary 
condition to normal direction), that is, fully developed 
condition in fluid flow. The entrance length for fully 
developed turbulent flow is empirically estimated as 

1/ 64.4 ReD  in case that inflow is uniform for smooth 
walls: the total axial distance from inlet to outlet is 
dependent on Reynolds number. 
 

And the grid system is constructed as uniform 
meshes in both axial and radial direction separately. To 
the meshes in radial direction, special care should be 
paid in accordance with the numerical model of 
turbulence, the Launder-Sharma model, which is 
empowered to resolve viscous sublayer with the viscous 
damping function. In other words, the key in the L-S 
model is to solve turbulent boundary layer with 
consideration about low Re effect very near wall by 
integrating directly up to the points corresponding to 
extremely thin viscous layer with mathematical 
functions asymptotically approximating to the layer. 
The viscous layer is conventionally defined as below 5 

in wall coordinate, 
*u yy 

  : u* is wall velocity (it 

means shear stress at wall) defined as 
*

wu   , y  is 
distance apart from wall, and   is dynamic viscosity. 
Therefore the first point in the radial direction meshes 
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from wall should be at least located in the range ( 5y  ) 
for correct calculations. In order to express this 

restriction, the very first point is expressed as py  and 

the wall coordinate corresponding to py  is defined as 
*

p
p

u y
y 
  .  

  
 

 
Fig. 1 Numerical domain for calculation by 

GAMMAT 
 

 
3. Validation of the L-S model in GAMMAT 

 
3.1. Integral parameters 
 

The validation of the L-S model in GAMMAT for 
heat transfer is presented here. Both the integral 
parameters, i.e., the skin friction coefficient for a 
momentum transfer and the Nusselt number, which 
serves as clear proof to show whether or not the heat 
transfer is suitably predicted, were tested. 

Focusing on a selected Reynolds number, 5300, the 
size of the numerical domain, i.e., the axial length and 
the meshes in the radial direction was controlled 

according to the wall coordinate py

. However, the 

meshes were only provided only for about py

=1~2, 
since the result from the study of the sensitivities 
showed that meshes to radial direction of approximately 

py

~2 provided a solution with an acceptable level of 
accuracy.  
 
3.1.1. Comparison to Correlations 
 
 

The skin friction coefficient was calculated using the 
formula by Prandtl, and the Nusselt number was 
calculated using a widely accepted empirical correlation 
by Gnielinski [15] 

 
   

 
D

Gnielinski 2/3

f/8 Re -1000 Pr
Nu =

1+12.7 f/8 Pr -1
 

,where   2

Df= 0.79ln Re  -1.64
  

 
Only 0.3%, 12% of error for the skin friction 

coefficient and Nusselt number were obtained using the 
formula as below. 

 LS Gnielinki
Nu

Gnielinki

Nu -Nu
Error = Nu

 

 
3.1.2. Comparison to the results from the FLUENT 

 

Comparing the meshes adopted in Fluent, at py

~1, 

coarser meshes around py

~2, in the radial direction 
were used to simulate the same flow in a turbulent 
convection regime by GAMMAT. 
 

Integral parameters such as skin friction coefficient 
and Nusselt number were obtained for heat transfer in 
turbulent forced convection regime in Table 1 using 
GAMMAT with even coarser meshes. 

 
Table 1 Comparison of integral parameters: skin 

friction coefficient and Nusselt number between the 
results using Fluent and GAMMATT 

 

 
 

Cf/Cf,0 Nu/Nu,0 

Fluent GAMMAT Fluent GAMMAT 

Forced convection 
at ReD=5,300 

1.02 1.00 0.97 0.99 

*All values are normalized to the data from the DNS 
[14] 

 
3.2. Profiles 

 
Excellent agreement clearly resulted in the profile of 

the velocity, as shown in Figure 2, in a turbulent forced 
convection regime by GAMMAT: all layers including 
the viscous layer, the transition, and the outer layer 
were well resolved. Furthermore, even coarser meshes 
in GAMMAT were used to obtain the same level of 
accuracy by the costly commercial CFD, Fluent and the 
extremely expensive DNS packages. The Reynolds 
shear stress in Figure 3 by GAMMAT also showed good 
agreement with the result from the Launder-Sharma 
model using Fluent. 
  

D/2 

L

Inflow Outflow

Wall 

Axis of symmetry 
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Fig. 2 Comparison of the profile of the velocity in the 

wall coordinate at Re=5,300 in a turbulent forced 
convection regime 

 

 
Fig. 3 Comparison of the profile of the Reynolds 

shear stress at Re=5,300 in a turbulent forced 
convection regime 
 
 

3. CONCLUSIONS  
 

With the help of improved computational capability, 
an application of CFD for nuclear reactor safety has 
been highlighted in this multi-dimensional heat transfer 
prediction within turbulent mixed convection regimes. 

Hence, an integrated system analysis code with 
multi-performance capability is preferred to establish 
firm knowledge of physics and improve the capability 
of on-line multi-scale cascade analyses. 
 

The numerical foundation was formulated and 
implemented in a way such that the capability of the L-
S model was incorporated into GAMMA+, a system 
code for gas-cooled reactors, based on the same 
backbone of the ICE scheme on stagger mesh, that is, 
the code structure and numerical schemes used in the 
original code. 
 

The GAMMAT code, an integrated system code with 
low-Re CFD capability on board, was suitably verified 

using an available set of data covering a turbulent flow 
and turbulent forced convection. In addition, a much 
better solution with the same quality of prediction with 
fewer meshes was given. This is a considerable 
advantage of the application into the system code. 
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