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1. Introduction 

 
The power iteration method is commonly used to get 

the fundamental eigenmode (0th mode). Recent years a 

modified power iteration method was proposed by Tom 

Booth [1-8] and it can be applied to get the second 

smallest eigenmode (1st mode) [9-10]. A possible 

technique to get the even higher modes is suggested, 

but it is difficult to be applied practically. In this paper, 

a general solution strategy is proposed, which can 

extend Tom Booth’s modified power method to get the 

higher eigenmodes and there is no limitation about the 

number of eigenmodes that can be obtained with this 

method. 

 

2. Theory 

 

In this section the modified power iteration method 

and the general solution strategy are presented.  

 

2.1 The modified power iteration method to get the 1st 

eigenmode 

 

Supposing that after many times of power iterations, 

only the first two smallest eigenmodes exist and the 

higher eigenmodes are negligible. The eigenfunctions 

can be written as: 
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where 1  and 2  are resulted from different initial 

sources. Considering the linear combination of 1  and 

2 , 
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If 1 1x a b  ,   will be the 0th eigenmode; while 

if 0 0x a b  ,   will be the 1st eigenmode. The 

corresponding eigenvalue: 
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will be the 0th and 1st eigenvalues, 0k  and 1k , 

respectively. 

It is then observed that the integration of   in any 

subregion of the system will produce the same 

eigenvalue. Typically, choose two subregions R1 and 

R2: 
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If we denote: 

 , ,i ij i ij
Rj Rj

dr W A dr AW      (5) 

then Eq. (4) will become: 

 11 21 12 22

11 21 12 22

,
AW xAW AW xAW

W xW W xW


 
 

 
  (6) 

which will then leads to 
2
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If two real solutions of the quadratic equation exist, 

they will certainly be 1 1 1x a b   and 2 0 0x a b  . 

The corresponding eigenvalues and eigenfunctions will 

be: 
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The strategy is to apply A repeatedly to 1  and 2 , 

and continue updating 1,2  and 1,2' .  1 1, '   and 

 2 2, '   will finally converge to  0 0,k   and 

 1 1,k  . 

 

2.2 The modified power iteration method to get the 2nd 

eigenmode 

 

Similar to the previous section, we can write 3 

different eigenfunctions as: 
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The linear combination of the three functions can be: 
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Then, it is integrated over three different subregions 

to get the same eigenvalue: 
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Substitute Eq. (5) into Eq. (11) we can get: 
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This will result in a nonlinear equation system to get 

the unknown variables  , x , and y . There should be 

three different sets of solutions which lead to the 0th, 1st 

and 2nd eigenmodes, respectively. To solve such 

nonlinear equation system may be difficult, so it is not 

practical to get the 2nd and even higher eigenmodes with 

this solution strategy. 

 

2.3 Another solution strategy to get the 1st eigenmode 

 

We concentrate on the solution of Eq. (6) at this 

section. It can be rewritten as: 
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This will leads to 
2

2 1 0 0c c c     with 
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We can first get the two solutions of 1,2 , and then 

substitute them to Eq. (13) to get 1,2x . 

Now we consider the transfer matrix P , which is 

defined as: 
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The solution of P  is: 
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We are interested in the eigenvalues of the transfer 

matrix P , so we need to solve the equation: 
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If we substitute the elements of P  into Eq. (7), we 

can get the quadratic equation 
2
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The coefficients are the same as that given in Eq. 

(14). Thus, the solutions of 1,2  is exactly the 

eigenvalus of the transfer matrix. 

Now let’s look at the solution of 1,2x , which can be 

written in matrix form: 
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Substitute Eq. (15) into Eq. (19), we can get: 
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If we can get the eigenvalues and corresponding 

eigenvectors of P : 
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Then, we can solve 1,2x  with 
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where C  contains the constants that are just used to 

scale the eigenvectors. Considering the normalization 

operation during every iteration of the power method, 

we can simplify the solution of 1,2x  as: 
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and update the eigenfunctions as: 
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2.4 The general solution strategy to get the higher 

eigenmodes 

 

Similarly, in order to get the first N eigenmodes, we 

should define N regions and get the integration of N 

different eigenfunctions in these N regions. The general 

solution strategy is as following. 

(1) During each power iteration, get 
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where ijW  and ijAW  are defined as in Eq. (5). 

(2) Get the transfer matrix 

 
1
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

    (26) 

(3) Get the eigenvalues and eigenvectors of transfer 

matrix: 

 .P V V D     (27) 

(4) The eigenvalues contained in D  are sorted to be 

from the largest to the smallest, and the eigenvectors 

contained in V  are changed accordingly. 

(5) Get the correction matrix X : 

 
1
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And set the diagonal elements of X  to 1. That is, 
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With the diagonal elements to be 1, the shape of the 

eigenfunctions can be kept the same. 

(6) Update the N eigenfunctions: 

    1 1' ' .N N X       (30) 

And then renormalize each eigenfunction. 

 

3. Numerical Tests 

 

In this section the deterministic and Monte Carlo 

results for 1D slab problems are given to show the 

performance of the method. 

 

3.1 Demonstration of the method with FDM 

 

A 1D1G slab problem is tested to show the ability of 

the general solution strategy for higher eigenmodes. 

The first four eigenmodes are considered. 

 

 
Fig. 1. Split fuel problem geometry 

 
Table I. Cross Sections of Material 

Material a (1/cm) f (1/cm) D (cm) 

Fuel 0.20 0.30 0.33 

Scatterer 0.20 0.00 0.33 

Absorber 0.90 0.00 0.33 
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Fig. 2. The first 4 eigenmodes 
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Fig. 3. Flux distribution and the RMS error of the flux (with 4 

eigenmodes) 
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Fig. 4. Convergence analysis of the standard power method 

and the modified power method with different eigenmodes 

 
Table II. Eigenvalue results 

Parameter Value 

k0 0.196417 

k1 0.196406 

k2 0.036654 

k3 0.036653 

Convergence rate of the standard power 

method (~k1/k0) 
0.999945 

Convergence rate of the modified 

power method with 2 eigenmodes 

(~k2/k0) 

0.186609 

Convergence rate of the modified 

power method with 3 eigenmodes 

(~k3/k0) 

0.186609 

Convergence rate of the modified 

power method with 4 eigenmodes 

(~k4/k0) 

0.071552 

 

3.2 Implementation of the method in Continuous energy 

Monte Carlo code 

 

A 1D fuel slab problem is chosen to test the 

implementation of the modified power method in 

continuous energy Monte Carlo code. The first four 

eigenmodes are considered. 

The Monte Carlo simulations with both original and 

modified power method are done with 200 inactive 

cycles / 1000 active cycles / 5,000 histories per cycle. 

Parallel computing with 7 threads is adopted with the 

typical desktop computer. 

 
Fig. 5. 1D slab problem geometry 

 
Table III. Composition of the fuel (units: atoms/barn-cm) 

Nuclide Density 

H-1 5.9347E-02 

N-14 2.1220E-03 

O-16 3.7258E-02 

U-235 7.6864E-05 

U-238 6.8303E-04 

 
Table IV. Eigenvalue results 

Parameter Value 

k0 (original) 1.25797±0.00018 

k0 1.25845±0.00015 

k1 1.15626±0.00059 

k2 1.01823±0.00070 

k3 0.86440±0.00082 

 

 
Fig. 6. The first 4 eigenmodes 
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Fig. 7. The Shannon Entropy results of the original and 

modified power method 

 

It can be seen that the fundamental eigenvalue result 

of the modified power method is consistent with the 

original power method, the difference is within 3σ. As 

shown with the Shannon Entropy results, the source 

convergence rate is significantly increased with the 

modified power method. The computing times for the 

original and modified power method are 22.38 and 

26.98 minutes respectively, which show that the 

implementation of the modified power method with 

Monte Carlo code doesn’t require obviously more 

simulation time. 

 

4. Conclusions 

 

In this paper, a general solution strategy is proposed, 

which can extend Tom Booth’s modified power method 

to get the higher eigenmodes and there is no limitation 

about the number of eigenmodes that can be obtained 

with this method. It is more practical than the original 

solution strategy that Tom Booth proposed. The 

implementation of the method in Monte Carlo code 

shows significant advantages comparing to the original 

power method. 
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