Performance Estimation of Supercritical CO₂ Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

Yoonhan Ahn^{a*}, Seong Gu Kim^a, Seong Kuk Cho^a, Jeong Ik Lee^{a*} ^aDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701, Korea Tel: 82-42-350-3829, Fax: 82-42-350-3810, Email: yoonhan.ahn@kaist.ac.kr, jeongiklee@kaist.ac.kr

1. Introduction

As the concerns about the global climate change gradually increases, the nuclear energy is considered as one of the promising candidates to attain the economics and regulate the CO_2 emission at the same time. In addition, a Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO_2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power

conversion system is designed for the full modularization. The system concept and design parameters are shown in Figure 1 and Table 1, respectively.

Based on the preliminary design, the thermal efficiency is 31.5% when CO₂ is sufficiently cooled to the design temperature [1]. However, the S-CO₂ compressor performance is highly influenced by the inlet temperature and the compressor inlet temperature can be changed when the atmospheric temperature varies. To estimate the S-CO₂ cycle performance of MMR in the various regions, a quasi-static system code for S-CO₂ cycle is developed by the KAIST research team.

Fig. 1. The module of Supercritical CO₂ MMR system

|--|

	<u> </u>	<u>_</u>	
Thermal power, MW _{th}	36.2	Turbine inlet temperature, °C	550
CO_2 mass flow rate, kg/s	175.8	Compressor inlet temperature, °C	60
S-CO ₂ cycle layout	Simple	Turbine / compressor	90.7 / 84.1
	recuperated	isentropic efficiency, %	
Thermal efficiency, %	30.9	Recuperator effectiveness, %	93.1
Heat exchanger pressure	3.3	Turbine / Compressor rotating speed,	20,200
drops, %		RPM	
Compressor inlet / outlet	7.5 / 20	Heat exchanger volume, m ³	0.91
pressure, MPa			

2. Off-design performance of S-CO₂ turbomachineries

To estimate the off-design performance of S-CO₂ turbomachineries, the Sandia National Lab (SNL)

experimental results are utilized [2]. Based on the design parameters of $S-CO_2$ turbomachineries manufactured by Barber & Nichols Inc., the off-design performance of $S-CO_2$ compressor and turbine is estimated as shown in Fig. 2.

The flow coefficient (Φ) and normalized flow coefficient (Φ_{norm}) are defined as below.

where Q, N, D are volumetric flow rate, rotating speed and impeller diameter, respectively.

Fig. 2. Off-design performance of S-CO₂ compressor and turbine

3. A quasi-static analysis

With the preliminary component design and performance parameters, a quasi-static system code is developed and its algorithm is shown in Fig. 3. The thermal efficiencies are predicted for the compressor inlet temperature variation as shown in Fig. 4. As the compressor inlet temperature decreases, the thermal efficiency increases. An abrupt decrease in thermal efficiency is shown when the compressor inlet temperature reaches 70° C.

Fig. 3. a quasi-static analysis code algorithm

Fig. 4. Thermal efficiency of S-CO₂ cycle with the compressor inlet temperature variation

4. Summary and further works

A supercritical CO_2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO₂ cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the offdesign performance of S-CO₂ turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized.

However, the turbomachinery performance is based on the SNL experiment facility, only limited information is released. To validate the off-design performance of S-CO₂ turbomachineries, the detailed experiment results are required.

REFERENCES

[1] S. G. Kim, M. G. Kim, S. J. Bae, J. I. Lee, Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor, Transactions of the Korean Nuclear Society Autumn Meeting, 2013

[2] S. A. Wright, P. S. Pickard, Operation and analysis of a S-CO2 Brayton cycle, SANDIA Report, SAND2010-0171, 2010