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1. Introduction 

 
In a Monte Carlo (MC) eigenvalue calculation, it is 

well known that the apparent variance of a local tally 
such as pin power differs from the real variance 
considerably. In the previous study [1], we have 
investigated the difference of the real to apparent 
standard deviation (SD) ratio due to tally size in MC 
eigenvalue calculations with the realistic problem such 
as BEAVRS [2] benchmark. It was noted that the 
apparent variance of a local MC tally such as pin-wise 
fission power or fuel assembly (FA)-wise fission power 
tends to be smaller than its real one while the apparent 
variance of the global MC tally such as keff is similar to 
the reference real one. 

The MC method in eigenvalue calculations uses a 
power iteration method.  In the power iteration method, 
the fission matrix (FM) and fission source density 
(FSD) are used as the operator and the solution. The 
FM is useful to estimate a variance and covariance 
because the FM can be calculated by a few cycle 
calculations even at inactive cycle. Recently, S. Carney 
have implemented the higher order fission matrix 
(HOFM) capabilities into the MCNP6 MC code in 
order to apply to extend the perturbation theory to 
second order [3]. Meanwhile, T. Endo proposed a 
theoretical model to predict the real to apparent SD 
ratio for local tally [4]. It was derived on the basis of 
HOFM and the autoregressive (AR) model in the MC 
eigenvalue calculations.  
   The purpose of this paper are to implement the 
HOFM capabilities into McCARD [5] and to 
investigate the real to apparent SD ratios with the aid of 
the HOFM and the Endo’s theoretical method.  
 
 

2. Method and Results 
 

2.1 Higher Order Fission Matrix 
 
A standard form of the Boltzmann transport equation 

can be rewritten as  
 

S S H                              (1) 
 

where S  and H  are FSD and fission operator, 
respectively. S  is defined by S   F  while H  is 
defined by 1H FT . T  and F  denote net loss and 
fission production operator in the standard form of the 
Boltzmann transport equation. S  can be expressed as 
follow: 
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is flux and FSD 
of n-th mode, respectively. ( )c

na  means an expansion 
coefficient of n-th mode with FSD at c-th cycle. The 
coefficient can be calculated by 
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In MC method, the ( )nS r


can be calculated by 

Hotelling deflation method [3]. The deflated fission 
matrix for n-th mode is 
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The capabilities for the HOFM calculations are 

implemented into McCARD. 
 
 
2.2 Verification of HOFM capability 

 
To examine the newly implemented HOFM routines, 

an one-group slab homogeneous problem surrounded 
by a thin reflector was tested. This simple slab 
problem was token from the Larsen’s paper [6].  The 
length of the central fissile region is 200 cm while the 
length of the left and right reflector region is only 5 
cm. The central fissile regions were divided equally 
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into 50 mesh regions for tally. Table I presents the 
cross section data of the Larsen’s slab problem. The 
MC eigenvalue calculations were performed on 2,500 
total cycles with 1,000,000 neutron histories per a 
cycle and 1,500 inactive cycles. Table II compares the 
k-eigenvalue calculated by McCARD and MATLAB 
scripts. The SD of n-th mode k-eigenvalue, nk , was 
estimated from 25 replicas with different random 
number sequence. The agreement between the 
McCARD and MATLAB seems excellent for each 
mode. From the results, the dominance ratio ( 1 0k k ) 
is about 0.998.  

 

Table I: Cross section in Larsen’s slab problem [5] 

Region Location (cm) t  ,0s  fv  

I 0<x<5 1.0 0.856 0 

II 5<x<205 1.0 0.856 0.144 

III 205<x<210 1.0 0.856 0 

 

Table II: k-eigenvalue (mode 0~9) 

Mode # MATLAB 
McCARD 

nk   n nk k (%)

0 0.999438 0.999438 0.003 

1 0.997250 0.997250 0.004 

2 0.993416 0.993416 0.004 

3 0.987999 0.987999 0.004 

4 0.981009 0.981009 0.004 

5 0.972567 0.972567 0.004 

6 0.962663 0.962663 0.004 

7 0.951415 0.951415 0.004 

8 0.938867 0.938867 0.004 

9 0.925179 0.925178 0.004 
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Fig. 1. Higher-order mode eigenfunction of  

Larsen’s slab problem (mode 0 ~ 3) 

 

Figure 1 shows the fission source eigenfunction in the 
range from 0-th to 3-rd mode. Figure 2 shows the cycle-
wise expansion coefficients as given in Eq.(3). In the 
figure, the expansion coefficients from 0-th mode to 9-
th mode are plotted. The fundamental mode is dominant 
in all the expansion coefficients. It is noted that the 
expansion coefficients for HOFM are slowly converged 
because of the inter-cycle correlation. 
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Fig. 2. Expansion coefficients of Larsen’s slab problem 

 (mode 0 ~ 9) 
 
 

2.3 Behavior of Real and Apparent SD due to Mesh Size 
 
Figure 3 and 4 compare the real and apparent SD of 

cell-wise fission power in 200 mesh and 20 mesh for 
the Larsen’s slab problem. As expected, the distribution 
of the apparent SD in Fig. 3 and 4 appears to trying to 
converge to correct cosine shape, whereas the real SD 
has a bimodal symmetric distribution with 2 peak points, 
which are located at about 50 cm and 150 cm.  

 It can be noted first that the real SD of cell-wise 
fission power in 200 mesh are indeed comparable to 
those in 20 mesh in level and shape. However, the real 
to apparent SD ratio ( REAL APP  ) in 200 mesh differs 
from those in 20 mesh considerably as shown in Fig. 5. 
This indicated that the difference of the real to apparent 
SD ratio comes from the difference of the apparent SD. 
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The apparent SD became small as the size of the MC 
tally mesh increases because the increase in volume 
leads to the increase of track events. 
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Fig. 3. Real and apparent SD of cell-wise fission power  

(200 mesh) 
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Fig. 4. Real and apparent SD of cell-wise fission power  

(20 mesh) 
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Fig. 5. Real to Apparent SD ratio of cell-wise fission power  

 
 

2.4 Comparison with theoretical results by AR model 
 
As mentioned in the introduction, T. Endo derived 

the theoretical formulation on the basis of higher-mode 
fission source distribution and the AR model. By the 

Endo’s formulation [3], the real to apparent SD ratio 
can be expressed  
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In this section, the real to apparent SD ratios of cell-

wise fission power for one dimensional slab problems 
are calculated to evaluate the Endo’s theoretical model. 
Table III shows the detailed description for two slab 
problem. The width of the slab is 10 cm. 
 

Table III: Cross Section in Endo’s slab problem [3] 

Problem 
B.C.* 

for both side t  ,0s  fv  

I Reflective 1.0 0.6  0.48 

II Vacuum 1.0  0.6  0.48 

 * B.C. = Boundary Condition 
 
In the Endo’s slab problem I, the n and ( )nS r


can be 

analytically solved  
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where t and a  is the macroscopic total cross section 
and absorption cross section, respectively. A  is the 
width of the slab. In the same manner, the analytic 
solution for the Endo’s slab problem II can be 
calculated. 

Figure 6 and 7 indicate the real to apparent SD ratios 
of cell-wise fission power by Endo’s theoretical models. 
To obtain the reference solutions, the MC eigenvalue 
calculations were performed on 1,100 total cycles with 
1,000,000 neutron histories per a cycle and 100 inactive 
cycles. The number of the mesh for both case is 10. The 
dominance ratio for Endo’s slab problem I and II is 
about 0.918 and 0.847, respectively. 

 In Fig. 6 and 7, the red dot line is the reference 
solutions estimated from 100 replicas with different 
random number sequence. The black solid line is the 
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results by the Endo’s theoretical model with the 
analytical solution given in Eq. (7), whereas the blue 
dash line is by the Endo’s theoretical model with the 
McCARD higher-mode FM solution. The FSDs in the 
range from 0-th mode to 9-th mode were used for each 
case. It is observed that the behavior of real to apparent 
SD ratio in the cell-wise fission power is affected by the 
uncertainty of the higher-mode fission source. Overall, 
the Endo’s theoretical model with the McCARD 
higher-mode FM solutions is indeed much closer to the 
reference than the Endo’s theoretical model with the 
analytical solution. The difference between the Endo’s 
models comes from the difference of the higher-mode 
solution between diffusion and transport theories.  
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Fig. 6. Real to Apparent SD ratio of cell-wise fission power 
(Endo’s Problem I)  
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Fig. 7. Real to Apparent SD ratio of cell-wise fission power  
(Endo’s Problem II) 

 
 
 
 
 
 

3. Conclusions 
 

In this study, the HOFM capability by the Hotelling 
deflation method was implemented into McCARD and 
used to predict the behavior of a real and apparent SD 
ratio. In order to predict the real to apparent SD ratio, 
the application of the Endo’s theoretical model based 
on the AR model was conducted. In the simple 1D slab 
problems, the Endo’s theoretical model predicts well 
the real to apparent SD ratio. It was noted that the 
Endo’s theoretical model with the McCARD higher-
mode FS solutions by the HOFM yields much better the 
real to apparent SD ratio than that with the analytic 
solutions. In the near future, the application for a high 
dominance ratio problem such as BEAVRS benchmark 
will be conducted. 
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