Statistical Analysis of Charpy Transition Temperature Shift in Reactor Pressure Vessel Steels: Application of Nuclear Materials Database(MatDB)

Gyeong-Geun Lee^{*}, Soyeon Kil, Junhyun Kwon Nuclear Materials Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 305-353, Korea ^{*}Corresponding author: gglee@kaeri.re.kr

1. Introduction

Recently, a comprehensive portal website for nuclear material information, as known as MD-Portal was launched by the nuclear materials division in the Korea Atomic Energy Research Institute (KAERI). The MD-Portal contains various technical documents on the degradation and development of nuclear materials. Additionally, the nuclear materials database (MatDB) is also launched in KAERI recently. The MatDB covers the mechanical properties of various nuclear structural materials used as the components: a reactor pressure vessel, steam generator, and primary and secondary piping. In this study, we introduced MatDB briefly, and analyzed the Charpy transition temperature shift in reactor pressure vessel steels of Korean nuclear power plants retrieved from MatDB. It can show an application of the MatDB to the real case of material degradations in NPPs.

2. An Example Application

2.1 MatDB

Fig. 1 shows a screenshot of the MatDB displaying a navigation tree and a property tab, which are containing the material information of the selected heat/batch of the RPV material. The Charpy impact test data and tensile data from surveillance test reports of Korean LWRs are input into the MatDB system. The data were organized according to "pedigree" (equal to the heat/batch of the metals) information to ensure the traceability. Fig. 2 shows collective Charpy properties of the Kori-1 unit base metals [1-3].

→ C □ 147.43.29.81/matdb	2/													
Nuclear structural material	Haterial	Pedigree	Details											
ASME SASSE Grade 2 ASME SASSE Grade 2 ASME SASSE frace 3 ASME SASSE 5 ASME SASSE 5 ASME SASE 5 ASME 5 <	Material I	Material Information												
	Material po	Material no												
	Material na		ASME SA533 T	vne B										
	Short name		SAS338											
	Other names		ASTM A533											
		Description												
N-base allow														
Alloy 600 Alloy 600 Alloy 600 Alloy 600 Alloy 600 Advanced material Accanced material Accanced material				A2TIN 구경과 A333 개료를 AXER code에서 위작면전서 가장은 추가로 할 것 A5323도로 영향은 개료답니다. 정확한 A5425 4543 금가적의 방향은, "Prosense Vessel Platter, Alloy Steel, Quenched and Tempend, Manganese-Holybdenum and Manganese- Malybdenum Hiskaf 입니다. SA533은 Min, Min, Min 2월 조심에 따라서 서부적으로 hyper에 A, B, C, D, E 까지 구분됩니다. 가게적 특성은 Classifi 의 위해서 구분 할 수 있습니다.										
	Description													
			이 균역에 의장 단작는 풍종 원자로 압력증기장의 별트라인 부위의 구조물로 사용됩니다. 벨트라인 부위는 높은 중성자 조사형으로 인하 이 물성의 변화가 일어날 수 있기 때문에, 추가적인 조성의 제약이 필요합니다. 이에 대해서는 조성 정보를 정조하십시오.											
			替고자료 • ASTH, A533/A533H-09											
			Standard spec ASTM A533/A533					35-09						
	Material inf	to	UNS K12539				19							
					lysis, wt%			t anaysis,	wt%					
			C, max	0.25			0.25		w1%					
			Mo	0.25			0.25		wt%					
				0.25			0.25		wt%					
nalle Charpy Eadque 3	-R SCC-CGR SSRT	T	Mo	0.25			0.25		wt%		_			
	-R SCC-CGR SSRT	т	Mo	0.25			0.25			_				
cer 25 • entries	-R SCC-CGR SSRT	Sample	Mo	0.25		÷	0.25	.62	lumss: [π.	¢	RA (%)		
cer 25 • entries		Sample name	Mo	0.25 1.15-1.9 0.012		0	0.25 1.07-1 0.015 Se	.62 arch all col	lumns:	п. %) 27.7	¢	RA (%) 08.0		
now 25 • entries	÷	Sample name 조사한 전장특성	Mo	0.25 1.15-1.9 0.012) (HPs)	0	0.25 1.07-1 0.015 Se Phy 0	.62 arch all col UE (%)	lumos:	96)	\$	(%)		
109 25 • entries No * Hatevial	0 Plant03 base (),) :	Sample name 조사한 안장북성 조사한 안장북성	Mo	0.25 1.15-1.9 0.012 Test (YC) 23	9 195 (MPn) 400	•	0.25 1.07-1 0.015 Se (15) 0.015	.62 arch all col (%) 25.2	lumns: [96) 27.7	\$	(%) 68.6		
No A Phonoid 10 S45338 20 S45338	0 Platt03 base (1) 2 Platt03 base (1) 2	<u>Sample</u> name 조사한 인장특성 조사한 인장특성 조사한 인장특성	Mn P. max	0.25 1.15-1.9 0.012	0 15 (1994) 480 475	• 6	0.25 1.07-1 0.015 Se 100 56 609 605	.62 arch all col (%) 25.2 34	lumns: [96) 27.7 27.5	¢	(%) 68.8 67.3		
No A Paterial 10 545338 20 545338 20 545338 21 545338	0 Plart03 base (1) 2 Plart03 base (1) 2 Plart03 vold (1) 2 Plart03 base (1) 2	<u>Sample</u> name 조사한 인장특성 조사한 인장특성 조사한 인장특성	Mn P. max	0.25 1.15-1.9 0.012 Test (YC) 23 23 23 23	0 (1954) (1994) 480 405 565	• d	0.25 1.07-1 0.015 Se 1000 0 602 603 600	.62 arch all col (%) 23.2 34 13.2	iumos:	96) 27.7 27.5 24.9	•	(%) 68.8 67.3 66.9		
Nor 25 • entr/les Nor A Potendial 10 564338 20 20 545338 22 21 545338 22 22 545338 22	Plant03 base (1) 2 Plant03 base (1) 2 Plant03 base (1) 2 Plant03 base (1) 3 Plant03 base (1) 3	Sarple name 조사한 안장목성 조사한 안장목성 조사한 안장목성 조사한 안장목성 고자한 안장목성	Mn P. max	0.25 1.15-1.9 0.012 Test (vc) 23 23 23 23 23 23	• (YS) (HPa) 480 475 555 400	• 6	0.25 1.07-1 0.015 Se 602 600 600	.62 arch all col (%) 25.2 34 13.2 11.5	turns:	96) 27.7 27.5 24.9 28.3	¢	(%) 68.8 67.3 66.9 70.3		

Fig. 1. Navigation tree and property tab of MD-portal MatDB. The basic material information is shown.

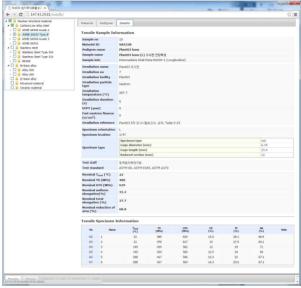


Fig. 2. Charpy impact test results of the Kori-1 unit base metals.

2.2 Statistical Analysis

Fig. 3 shows the TTS with irradiation time for the base metals retrieved from MatDB. In the case of the base metals, TTS increase with irradiation time, however the tendency was not clear. Some samples show a large deviation in the monotone increase tendency of TTS with irradiation.

Fig. 4 shows the relation plot between TTS and irradiation time in the weld metals of the LWR data in Korean nuclear power plant. As shown in figure, there is a gap between the high TTS points and low TTS points. It is because of the higher Cu content of about 0.22 wt% in Linde 80 of Kori 1 unit. We tried the simple modeling of REG1.99/2 onto the points. However, there are deviations in the results. Therefore, it is required to develop an elaborated model based on the statistics.

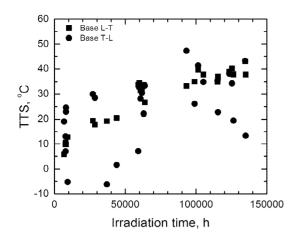


Fig. 3. TTS of base metal and weld metal of Korean surveillance data with neutron irradiation

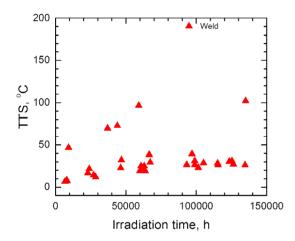


Fig. 3. TTS of weld metal and weld metal of Korean surveillance data with neutron irradiation

3. Summary

The MatDB includes the tensile results, Charpy results, fatigue results and J-R curve results at present. In the future other properties such as creep, fracture toughness, and SCC degradations are going to be added consistently. The data from MatDB were successfully applied to estimate the TTS analysis of Korean RPV steels in surveillance tests. The TTS behavior showed rather complex relationship with irradiation time, and an improved model is needed.

REFERENCES

[1] IAEA, "Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels," IAEA Nuclear Energy Series No. NP-T-3.11, International Atomic Energy Agency (2009). [2] KAERI, "Final report for the 5th surveillance test of the reactor pressure vessel material of Kori nuclear power plant unit 1", KAERI/CR-93/20002000.

[3] J. Kwon, G.-G. Lee, and C. Shin, "Multiscale Modeling of Radiation Effects on Materials: Pressure Vessel Embrittlement," Nucl. Eng. Technol., vol. 41, pp.1-20, (2009).