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1. Introduction 
 

In order to operate the pressurized water reactor 
(PWR) safely, the temperature of the nuclear fuel 
surface has to increase in the nucleate boiling region. 
However, a point may be reached where the bubble 
density becomes so great that adjacent bubbles coalesce 
and begin to form a vapor film across the surface of the 
rods. This phenomenon of boiling crisis is called a 
departure from nucleate boiling (DNB). The DNB 
phenomena can influence the fuel cladding and fuel 
pellets [1]. The DNB ratio (DNBR) is defined as the 
ratio of the expected DNB heat flux to the actual fuel 
rod heat flux. Since it is very important to monitor and 
predict the minimum DNBR in a reactor core to prevent 
the boiling crisis and clad melting, a number of 
researches have been conducted to predict DNBR 
values [2-10]. 

The aim of this study is to estimate the minimum 
DNBR in a reactor core using the measured signals of 
the reactor coolant system (RCS) by applying cascaded 
fuzzy neural networks (CFNN) according to operating 
conditions. Reactor core monitoring and protection 
systems require minimum DNBR prediction. The 
CFNN can be used to optimize the minimum DNBR 
value through the process of adding fuzzy neural 
networks (FNN) repeatedly. 

The used output data of the CFNN are minimum 
DNBR values in a reactor core in a number of operating 
conditions and the input data are reactor power, core 
inlet temperature, pressurizer pressure, coolant flowrate 
of a reactor core, axial shape index (ASI), and a variety 
of control rod positions.  

The proposed DNB estimation algorithm was 
verified by applying the nuclear and thermal data 
acquired from many numerical simulations of the 
optimized power reactor 1000 (OPR1000).  

 
2. Cascaded fuzzy neural networks 

 
The fuzzy system has been produced based on 

“Learning” and “Inference” intelligently. The study of 
fuzzy theory has been aimed in order to prove by 
mathematical approach about inaccuracy in thought and 
action of human.  
 
2.1. Fuzzy inference system 
 

The fuzzy inference system (FIS) generally uses the 
conditional rules that is comprised of if-then rules of the 

antecedent part and consequent part, and is one of the 
methods of artificial intelligence [11]. Both the 
antecedent and consequent parts have membership 
functions. In most cases, the Gaussian, triangular, 
trapezoid and bell-shaped functions are used in the 
formula of the membership function. 
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Fig. 1. Fuzzy Inference System (Mamdani-type FIS) 
 
Fig. 1 shows the FIS. This study uses the Takagi-

Sugeno-type FIS that does not need the defuzzifier in 
the output terminal because its output is a real value. 
Using the Takagi-Sugeno-type, an arbitrary i -th rule 
can be expressed as follows [12]: 
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where ( )jx k  is the input linguistic variable to the fuzzy 

inference model ( 1,2, ,  ;j m   m  is the number of 

input variables), ( )ijA k  is the membership function of 

the j -th input variable for the i -th fuzzy rule 

( 1, 2, ,  ;i n   n  is the number of rules), and ˆ ( )iy k  is 

the output of the i -th fuzzy rule. The number of N  
input and output training data of the fuzzy model 

 ( ) ( ), ( )T Tz k k y k x  (where 1 2( ) ( ( ), ( ),T k x k x kx   

, ( ))mx k and 1, 2, ,k N  ) were assumed to be 

available and the data point in each dimension was 
normalized. And Gaussian membership function was 
used because Gaussian membership function reduced 
the number of the parameters to be optimized. The 
output of the FIS using the Takagi-Sugeno-type can be 
expressed as follow [12]: 
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Fig. 2. Fuzzy Neural Network (FNN) 
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Fig. 2 shows the calculation method of the FIS [13]. 

The first layer indicates the input nodes that directly 
transmit the input values to the next layer. Each output 
from the first layer is transmitted to the input of a 
membership function. The second layer indicates a 
fuzzification layer that calculates membership function 
values. The third layer indicates a product operator on 
the membership functions that is expressed as Eq. (4). 
The fourth layer performs a normalization operation 
that is expressed as Eq. (5). The fifth layer generates the 
output of each fuzzy if-then rule. Finally, the sixth layer 
performs an aggregation of all the fuzzy if-then rules 
and is expressed as Eq. (2).  

Therefore, the output of the FIS by Eq. (2) is 
expressed as the vector product as follow: 
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The vector q  is called a consequent parameter vector 

that has ( 1)m n dimensions, and the vector ( )kw  

consists of input data and membership function values. 
The estimated output for a total of N input and output 
data pairs induced from Eq. (7) can be expressed as 
follows: 
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The matrix W  consists of input data and 

membership function values. The output values of FIS 
are expressed in a matrix, W , of ( 1)N m n   

dimensions and a parameter vector q  of ( 1)m n  

dimensions.  
 
2.2. Optimization of the fuzzy inference system  

 
In this study, the CFNN is used to estimate the 

minimum DNBR and the training of the FNN is 
accomplished by a hybrid method combined with a 
back-propagation algorithm and a least-squares 
algorithm. The back-propagation algorithm that uses a 
gradient descent method is a general method for 
recursively training the fuzzy neural networks. The 
gradient descent method tunes the antecedent 
parameters (the center position of membership 
functions and their sharpness) so that the predefined 
objective function E  is minimized. In order to train an 
antecedent parameter ija , the following iterative 

calculation is used: 
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a  is a learning rate for a parameter a . The gradient 

descent method is very stable when the learning rate is 
small but susceptible to local minimum. 

If antecedent parameters of the FIS are determined 
by the back-propagation algorithm, the resulting fuzzy 
neural networks are equivalent to a series of expansions 
of some basis functions. This basis function expansion 
is linear in its adjustable parameters. Therefore, the 
least-square method was used to determine the 
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consequent parameter of fuzzy rules. The consequent 
parameter q  was chosen to minimize the following 

objective function. This objective function consists of 
the square error between the actual value y  and its 

predicted value ŷ , and it is expressed as follows: 
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tN  is the number of training data. 

 
A solution for minimizing the above objective 

function can be obtained using Eq. (8). To solve the 
parameter vector, q , the inverse of the matrix W  must 

exists. On the other hand, there is no inverse matrix 
generally. Therefore, the pseudo-inverse of the matrix 
W  was used. The parameter vector, q , is solved easily 

from the pseudo-inverse as shown below. 

 
1( )T Tq W W W y  (11) 

 
That is, the parameter vector q can be calculated 

from a series of input and output data pairs. 
 
2.3. Cascaded fuzzy neural networks 
 

There have been a number of studies on the fusion of 
fuzzy logic and neural networks, termed FNN. Most of 
the existing FNN models have been proposed to 
implement different types of single-stage fuzzy 
reasoning mechanisms. However, single-stage fuzzy 
reasoning is only the most simple among a human 
being’s various types of reasoning mechanisms.  
Syllogistic fuzzy reasoning, where the consequence of a 
rule in one reasoning stage is passed to the next stage as 
a fact, is essential to effectively build up a large scale 
system with high level intelligence [14]. In view of the 
fact that the fusion of syllogistic fuzzy logic and neural 
networks has not been sufficiently applied in nuclear 
engineering field, a CFNN model based on syllogistic 
fuzzy reasoning is applied in this paper. 

The CFNN model contains two or more inference 
stages where each stage corresponds to a single-stage 
FNN module. Each single-stage FNN module contains 
fuzzification, fuzzy inference, and training units. The 
architecture of the CFNN is shown in Fig. 3. 

The CFNN can be used to estimate the target value 
through the process of adding FNN repeatedly. In 
CFNN method, the first stage FNN is the same as the 
FNN of Fig. 2. The second stage FNN uses the initial 

input variables and the output variable of the first stage 
FNN as input variable. Therefore, this process is 
repeated L  times to find the optimum value. 
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Fig. 3. Cascaded Fuzzy Neural Network (CFNN) 
 
Similarly to Eq. (1), an arbitrary i -th rule of the 

CFNN can be expressed as Eq. (12): 
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(12) 

 
where L is the total number of stages and the remaining 
variables are the same as before. 

The CFNN model is trained sequentially at each 
FNN module by the same way as explained in 
subsection 2.2. Fig. 4 shows the optimization procedure 
of the CFNN model. 

1i i 

 
Fig. 4. Optimization procedure of CFNN model 
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3. Application to the minimum DNBR estimation 
 
The proposed algorithm was applied to the first fuel 

cycle of the OPR1000. The DNB data were obtained by 
running the MASTER [15] and COBRA codes [16]. 
The MASTER (Multipurpose Analyzer for Static and 
Transient Effects of Reactor) reactor analysis code 
developed by KAERI (Korea Atomic Energy Research 
Institute) is a nuclear analysis and design code which 
can simulate the PWR and BWR core in 1-, 2-, 3-
dimensional geometry. The MASTER code was 
designed to have a variety of capabilities such as static 
core design, transient core analysis and operation 
support and is interfaced with the COBRA code for 
thermo-hydraulic calculations. Since these two codes 
are best-estimated codes, additional margins should be 
provided to setup the protection limits for DNB 
protection or alarm set points for DNB monitoring [10]. 

The DNB data comprise a total of 18816 input-output 
data pairs ( 1 2 9, , , , rx x x y ) that can describe the 

reactor core states appropriately in the ranges of the 
input variables given in Table I [10]. In this study, the 
used DNB data were composed of 200 pieces of test 
data and the remaining data were used to development 
the CFNN model, which is a development data set. 90% 
in the development data set was used to train each FNN 
module and 10% was used to optimize the CFNN 
structure. 1x through 9x  are the input signals that 

represent the reactor power, core inlet temperature, 
coolant pressure, mass flowrate, axial shape index 
(ASI), R2, R3, R4 and R5 control rod positions, and 

ry is the output signal which indicates the minimum 

DNBR in the reactor core. ASI is defined as 
( ) / ( )B T B TP P P P   where BP  is the bottom-half 

power and TP is the top-half power of a nuclear reactor.  

 
Table I: Ranges of input and output signals 

 

Input signals 
Nominal 
values 

Ranges 

Reactor power (%) 100% 80 ~ 103 

Inlet temperature (oC) 295.8 290.5 ~ 301.7 

Pressure (bar) 155.17 131.0 ~ 160.0 

Mass flowrate (kg/m2-sec) 3565.0 2994.6 ~ 4135.4

ASI - -0.597 ~ 0.534 

SPND signals - 7.4 ~ 322.0 

R2 control rod positions (cm) - 0 ~ 381 

R3 control rod positions (cm) - 0 ~ 381 

R4 control rod positions (cm) - 0 ~ 381 

R5 control rod positions (cm) - 0 ~ 381 

Output signals 
Nominal 
values 

Ranges 

DNBR value - 0.853 ~ 5.176 

 

The DNB data were divided into the development 
data and test data sets. The CFNN is trained for two 
DNBR development data sets divided into both the 
positive (relatively high at a bottom part of a reactor 
core) ASI and the negative ASI since these results had 
smaller errors compared with results with only one data 
set. The number of rules of the CFNN is 6. 

 
Table II: DNBR calculation results by the CFNN 

 
Table II summaries the DNBR calculation results by 

the CFNN. If ASI value is positive, the RMS error and 
the relative maximum error are 0.23% and 1.15%, 
respectively. Also, if ASI value is negative, the RMS 
error and the relative maximum error are 0.12% and 
0.29%, respectively. 
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Fig. 5. RMS error versus the number of stage of the CFNN  
(development data) 

0 10 20 30 40
0

1

2

3

 

 

M
ax

im
um

 e
rr

or
 (

%
)

The stage of CFNN

 Negative ASI
 Positive ASI

Fig. 6. Maximum error versus the number of stage of the 
CFNN (development data) 

 

Training data Test data 

No. of 
data 

points

RMS 
error (%)

Relative 
maximum 
error (%) 

No. of 
data 

points 

RMS 
error 
(%) 

Relative 
maximum 
error (%)

Positive 
ASI 

8467 0.181 0.920 100 0.229 1.152 

Negative 
ASI 

8467 0.128 0.856 100 0.116 0.289 
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Fig. 7. RMS error versus the number of stage of the CFNN 
(test data) 
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Fig. 8. Maximum error versus the number of stage of the 
CFNN (test data) 

 
Fig. 5 and 6 show RMS error and maximum error for 

the development data, respectively. As the number of 
stages of the CFNN is increased, the errors are reduced 
gradually. Fig. 7 and 8 show RMS error and maximum 
error for the test data, respectively. As the number of 
stages of the CFNN is increased, the errors are reduced 
gradually. The sequential execution of the CFNN was 
carried out until performance change according to the 
number of stage of the CFNN is not large. 

Table III shows the results of the FNN model [8] and 
the fuzzy support vector regression (FSVR) model [9] 
developed previously. It is shown that the proposed the 
CFNN model has better performance compared to the 
existing FNN and FSVR models. 

 
Table III: DNBR calculation results by FNN [8] and FSVR 

[9] models 

 
 

4. Conclusion 
 

In this paper, CFNN models have been developed to 
estimate the minimum DNBR in the reactor core. The 
proposed algorithm is trained by using the data set 
prepared for training (development data) and verified 
by using another data set different (independent) from 
the development data. 

The developed CFNN models were applied to the 
first fuel cycle of OPR1000. The RMS errors are 0.23% 
and 0.12% for the positive and negative ASI, 
respectively. The CFNN is sufficiently accurate to be 
used in DNBR estimation. 
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