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1. Introduction 

 
Most Best Estimate Plus Uncertainty (BEPU) 

methods employ nonparametric order statistics through 

Wilks’ formula to quantify uncertainties of best 

estimate simulations of nuclear power plant (NPP) 

transients.  95%/95% limits, the 95
th

 percentile at a 95% 

confidence level, are obtained by randomly sampling all 

uncertainty contributors through conventional Monte 

Carlo (MC). Advantages are simple implementation of 

MC sampling of input probability density functions 

(pdfs) and limited computational expense of 1
st
, 2

nd
, and 

3
rd

 order Wilks’ formula requiring only 59, 93, or 124 

simulations, respectively.  A disadvantage of small 

sample size is large sample to sample variation of 

statistical estimators.  The statistical fluctuation of 1
st
 

order Wilks’ limits can be as large as the uncertainty 

value itself in BEPU applications [1].  Wilks’ 95%/95% 

limits may be satisfactory for meeting regulatory 

requirements but do not accurately characterize the true 

safety margin.  

This paper presents a new efficient sampling based 

algorithm for accurate estimation of mean and variance 

of the output parameter pdf.  The algorithm combines a 

deterministic sampling method, the unscented transform 

(UT), with random sampling through the generation of 

a random orthogonal matrix (ROM).  The UT 

guarantees the mean, covariance, and 3
rd

 order moments 

of the multivariate input parameter distributions are 

exactly preserved by the sampled input points and the 

orthogonal transformation of the points by a ROM 

guarantees the sample error of all 4
th

 order and higher 

moments are unbiased.  The UT with ROM algorithm is 

applied to the uncertainty quantification of the peak 

clad temperature (PCT) during a large break loss-of-

coolant accident (LBLOCA) in an OPR1000 NPP to 

demonstrate the applicability of the new algorithm to 

BEPU.   

 

2. UT and ROM Algorithm  

 

2.1 Unscented Transform 

 

The UT was developed in the context of extending 

the Kalman Filter (KF) to nonlinear system dynamics 

[2].  The KF is one of the most widely used predictor-

corrector algorithms used to estimate the mean and 

covariance of system states of dynamic systems defined 

by linear process and observation models subject to 

noise.  The KF would break down when applied to 

nonlinear systems so the UT was developed as a 

computationally efficient method to predict statistical 

properties of random variables transformed through 

nonlinear functions.  The UT only requires sample sizes 

on the order of two times the number of input variables. 

The UT generates input samples referred to as sigma 

points from the n-dimensional input joint pdf defined by 

the mean vector  ̅  [          ]
 and covariance 

matrix P.  The sigma point set is symmetric with a 

central point for a total of 2n+1 points  
 

                              ̅ (1) 

        ̅  (√      )
 
 (2) 

        ̅  (√      )
 
 . (3) 

 

To obtain estimates of mean and variance of the output 

y, the sigma points are propagated through the nonlinear 

function h(x) representing a computer code or model 
 

      (    ) . (4) 
 

Sample mean and variance are calculated 
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The UT weighting coefficients are 
 

                    ⁄   (7) 
  

    [      ]⁄              . (8) 
 

The variable k appearing in the sigma point and weight 

equations is a free scaling parameter. 

In Eqs. 2 and 3, the i
th

 and (i+n)
th

 sigma points are 

obtained from the i
th

 column of a matrix square root of 

the covariance matrix.  All covariance matrices are 

square, positive semi-definite, and symmetric so P can 

be diagonalized through eigen decomposition 
 

        . (9) 
 

U is an (nxn) orthogonal matrix and the columns ui are 

the eigenvectors of P. An orthogonal matrix is defined 

as a square matrix whose columns and rows are 

orthonormal vectors such that            where 

In is the (nxn) identity matrix.  The columns of U are an 

orthonormal basis of   .  The transpose of an 

orthogonal matrix is equal to its inverse       .    

is a (nxn) diagonal matrix with elements       , the 

eigenvalues of P.  The eigenvectors and eigenvalues 

satisfy         .  The matrix square root of   is the 
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diagonal matrix √  with nonzero entries √    √    

which satisfies   √ √ 
 
 and √  √ 

 
.   

Equation 9 is recast as 
 

   √ √     , (10) 
 

and the matrix square root of P is readily obtained as 
 

√   √  . (11) 
 

The eigenvectors from U define the principal axes of the 

covariance matrix so the UT selects the scaled principal 

axes as sigma points.  The sample covariance of the 

sigma points exactly matches P because the scaled 

principal axes correctly encode all of the covariance 

information.  If the input pdfs are symmetric such as 

Gaussian or uniform distributions, the 3
rd

 order 

moments will also be matched exactly because the 

sigma point set is symmetric.  Error is introduced in the 

4
th

 order sample moments and the parameter k can be 

selected to reduce the error based on pdf type.  The UT 

is a deterministic sampling algorithm due to Eqs. 1 – 8 

and deterministic nature of matrix eigen decomposition 

methods such as singular value decomposition (SVD) 

or Cholesky decomposition used to calculate the matrix 

square root.   

 

2.2 Orthogonal Transform of Matrix Square Root 

 

   The matrix square root of Eq. 11 obtained through a 

deterministic eigen decomposition method is only one 

particular square root of P.  Next we show that an 

infinite number of matrix square roots exist for a 

covariance matrix by multiplying the right hand side of 

Eq. 11 by any arbitrary orthogonal matrix Q that is the 

same size as P 
 

√   √   . (12) 
 

Substituting Eq. 12 into Eq. 10 and applying some 

matrix multiplication properties 
 

   √  ( √  )
 
  √    √ 

 
     

            √  √ 
 
           .  (13) 

 

Equation 12 is the general form of the matrix square 

root and is acceptable for use in Eqs. 2 and 3.  The 

orthogonal transformation of the matrix square root 

does not change the 2
nd

 order properties of the sigma 

point set but can have profound effects on the 4
th

 

moment error terms.  The accuracy of the UT using 

various orthogonal transforms and parameter k was 

studied in [3]. 

 

2.3 Random Orthogonal Matrix 

 

ROMs arise from random matrix theory, a large topic 

in theoretical mathematics with applications in quantum 

mechanics, statistics, encryption, and computer science 

[4].  A ROM is a random matrix from the orthogonal 

group On and is Haar distributed.  Specifically, the 

matrix entries of a ROM are jointly distributed as 

Gaussian variables with variance n
-1

 as the dimension of 

the matrix becomes large.  Because ROMs are 

orthogonal matrices, the columns of a ROM are an 

orthonormal basis of   .  The individual matrix entries 

behaving statistically as random samples from the joint 

Gaussian coupled to the orthogonal structure of the 

matrix columns results in a powerful mathematical tool 

that is simultaneously random and structured with 

orthogonal properties.  As a linear transformation, a 

ROM can be interpreted multi-dimensional rotation to a 

new coordinate system that is at a random orientation to 

the original frame of reference.  Alternatively, the ROM 

is n random data samples drawn from an n-dimensional 

Gaussian with variance n
-1

. 

ROMs can be easily generated by performing SVD 

on any (nxn) matrix A that has matrix entries generated 

from random sampling of the standard normal 

distribution.  The SVD of A is 
 

       . (14) 
 

S and V are both (nxn) ROMs and   is diagonal.  

Recognizing Gaussian distributions are invariant under 

linear transformations, the Gaussian property is 

demonstrated by rearranging Eq. 14 
 

        . (15) 
 

The matrix A is distributed according to the standard 

normal distribution and undergoes two linear 

transformations   and    so the resulting matrix S 

must also be Gaussian distributed.  If SVD is applied to 

a symmetric matrix such as a covariance matrix, Eq. 14 

is equivalent to Eq. 9 with S  = V  defining the principal 

axes and   are the eigenvalues. 

 

2.4 Incorporating ROM into UT 

 

If a ROM is used as Q, Eq. 12 can be interpreted as a 

random multi-dimensional linear transformation of 

principal axes. Alternatively, Eq. 12 can be viewed as 

random data points from a Gaussian with variance n
-1

 

undergoing linear transformations to become aligned 

with the principal axes of the target covariance matrix.  

The latter interpretation when considered in the context 

of Eqs. 2 and 3 with k = 0 involves the scaling of the 

random points such that they become white Gaussian 

points.  Thus the sigma points are random points that 

are guaranteed to match the target covariance matrix 

exactly.  Since the sigma points are random, the sample 

4
th

 order moment including the cross product terms will 

be unbiased estimates of the moments from a Gaussian. 

The Gaussian property of ROMs is an asymptotic 

property so for small n the dimension of the problem 

may need to be increased by augmenting the input 

vector by hidden noise variables v 
 

   *
 
 
+ . (16) 

 

The input covariance matrix must also be augmented 
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When sigma points are generated using the matrix 

square root of   , rows n+1 through n+m of the matrix 

square root are suppressed because the noise variables 

are not actual model inputs.  The ROM generated is 

increased in size to (n+m)x(n+m).  For approximately n 

< 25, a ROM will systematically underestimate the 

kurtosis of the Gaussian distribution so we recommend 

augmenting such that the total dimension    is at least 

25 to 50 variables and the number of sigma points is 50 

to 100 which is the same order of magnitude 

computational expense as lower order Wilks’ formula.  

The UT with ROM algorithm is summarized in Table I. 

   Input augmentation was first suggested in [5] as a 

method to improve accuracy of the UT for low 

dimensional problems with highly nonlinear functions.  

By adding additional sigma points, the higher order 

terms are better characterized.  The practical advantage 

of using a ROM with the UT is all input dimensions are 

simultaneously and randomly varied for every sigma 

point.  When combined with input vector augmentation, 

all 4
th

 order moment errors can be guaranteed to be 

unbiased improving performance for any arbitrary 

nonlinear function whereas some deterministic 

orthogonal transforms presented in [3] will introduce 

systematic error in some 4
th

 order moments possibly 

leading to large errors if 4
th

 order terms of the function 

are important.  

 

3.  PCT Uncertainty Analysis 

 

In this section we evaluate the uncertainty of the 

blowdown PCT during a LBLOCA in a pressurized 

water reactor using the UT with ROM algorithm.  The 

LBLOCA is an extensively studied design basis 

 

 

 

  

accident in the context of BEPU and provides a 

benchmark for the new algorithm in best estimate 

reactor safety simulation applications. 

 

3.1  MARS Model for LBLOCA and Input Parameters 

 

The MARS code version KS1.3 [6] is used to 

simulate the cold leg 200% doubled ended guillotine 

break with the Ulchin Units 3&4 (UCN3&4) input 

model [7] as a representative OPR1000.  The reactor 

core is modeled with two coolant channels representing 

the hot rod channel and a core-averaged rod channel.  

Each channel has 12 axial nodes and the power 

distribution is set as the top-skewed cosine shape 

specified for the LBLOCA analysis in the Final Safety 

Analysis Report [8].  For the hot rod channel, the linear 

heat generation rate in node 8, the power peak location, 

is set to the limiting condition of operation of 13.9 

kW/ft. 

Relevant thermal hydraulic phenomena, processes, 

and input parameter uncertainties are identified in the 

phenomena identification ranking table and assessment 

and ranging of parameters steps of BEPU methods.  For 

the blowdown PCT, the stored energy in the fuel rod, 

heat transfer coefficients, counter current flow 

limitation (CCFL) and reactor coolant pump two phase 

flow performance are important phenomena.  Table II 

list 22 input parameters and associated pdfs to be 

sampled by the UT with ROM for uncertainty 

quantification of the blowdown PCT.  The parameters 

and uncertainty information were adapted from other 

LBLOCA studies related to the OPR1000 and the 

MARS code [9]. 

 

3.2  UT PCT Results and Comparison to MC Sampling 

 

With 22 input parameters, the UT with ROM 

algorithm should be able to accurately estimate the 

mean and variance of the blowdown PCT using a 

Table I.  Improved  Unscented Transform using Input Vector Augmentation and Random Orthogonal Matrix  
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minimum of 44 MARS simulations. To minimize 

systematic error in the 4
th

 central moments of the input 

pdfs, the sigma point set should contain at least 50 to 

100 data points requiring the augmentation of the input 

vector with at least 3 noise variables.  Ten sigma point 

sets are generated using different ROMs.  Eight sets are 

augmented with 3 noise variables and two sets 

augmented with 16 and 28 noise variables for sample 

sizes of 50, 76, and 100 simulations.  An additional 

2500 MC simulations are performed to provide a 

numerical benchmark for the UT PCT mean and 

variance estimates.  All simulations are run in batches 

with scheduling arranged by the MOSAIQUE software 

[10]. 

Table II lists 9 variables that are uniform 

distributions.  A complication arises with the sample 4
th

 

order moments of the uniform variables becomes the 

statistical properties of the ROM guarantees all 

variables are Gaussian distributed.  The kurtosis of the 

uniform variables would be systematically 

overestimated because kurtosis of uniform distribution 

is 9/5 compared to 3 for Gaussian distribution.  The 

inverse cumulative distribution function (cdf) transform 

is applied to the rows of the ROM corresponding to the 

uniform variables as a convenient way to ensure the 

these sigma points are statistically distributed as 

uniform.  The Gaussian to uniform cdf transform is 

nonlinear so there is a slight loss of orthogonality 

introducing small error in the variance of the uniform 

variables. 

Figure 1 shows the PCT pdf generated from the 2500 

MC simulations.  The sample mean is 1167.1 K and the 

variance is 2900 K
2
 corresponding to a standard 

deviation of 53.8 K.  The 95
th

 percentile is 1264.8 K.  

Table III presents the UT with ROM estimates of the  

 

PCT mean and variance from the 10 sigma point sets.  

The variances are reported as standard deviations.  UT 

sample 9 is the 100 sigma point sample generated from 

a 50x50 ROM and sample 10 is the 76 sigma point 

sample generated from a 38x38 ROM.  For comparison, 

9 MC samples of 50 simulations each are included in 

Table III.  The MC samples are subsets of the 2500 MC 

sample drawn at random.   

All 10 UT estimates of the PCT mean are very close 

to the MC benchmark estimate.  All UT estimates of the 

PCT standard deviations are also very close to the MC 

estimate.  The UT with ROM samples show very little 

sample to sample variation of mean and variance 

estimates indicating the improved UT algorithm is 

statistically robust despite relatively small sample size 

with a large number of input variables.  On the other 

hand, the 50 sample MC subsets estimators show large 

sample to sample variation which is expected of MC 

samples of limited size. 

With regard to the 95
th

 percentile and 1477 K PCT 

regulatory limit from 10CFR50.46 commonly 

considered in BEPU, the UT mean and variance 

estimates do not conclusively determine whether the 

regulatory acceptance criteria are met.  Considering the 

data from UT sample 1, the 1477 K limit is 5.7 standard 

deviations from the mean.  Exceeding the safety limit 

could be viewed as a “six sigma event” with very low 

probability for this example.  Since the two methods 

require the same magnitude of computational cost, UT 

with ROM could be incorporated into BEPU as a 

complimentary approach to Wilks’ formula providing 

additional reliable uncertainty information, mean and 

variance, to supplement 95%/95% limits providing a 

more definite statement of safety margin. 

 

 
Table II. MARS Input Parameters and Distributions for Blowdown PCT Analysis  
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Fig. 1. PCT pdf from 2500 MC MARS simulations.  

 
 

        Table III. PCT Mean and Variance Estimates  

 
 

4.  Conclusions 

 

This paper presented a new algorithm combining the 

UT with ROM for efficient multivariate parameter 

sampling that ensures sample input covariance and 3
rd

 

order moments are exactly preserved and 4
th

 moment 

errors are small and unbiased.  The advantageous 

sample properties guarantee higher order accuracy and 

less statistical variation of mean and variance estimates 

of the output pdf.  For BEPU applications where on the 

order of 20 to 50 input parameter uncertainties are 

usually sampled, the UT with ROM requires the same 

order of magnitude of best estimate code simulations as 

the widely used Wilks’ formula.   

In addition to BEPU, the UT with ROM may be a 

useful sampling algorithm in other nuclear applications 

involving computer codes and uncertainties.  One future 

area of research is nuclear data uncertainty propagation 

in neutronics calculations.  Cross section uncertainties 

are conveniently available as covariance data in the 

evaluated nuclear data files so the UT only requiring 

covariance information appears to be an appropriate 

method.  With many isotopes, reaction types, and fine 

and ultra-fine energy group libraries, application of the 

UT with ROM to cross section uncertainties could 

involve interesting computer science aspects involving 

matrix decomposition of very large covariance matrices 

and generation of very large ROMs.  
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