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1. Introduction 

 
The PGSFR (Prototype Gen-IV Sodium-cooled Fast 

Reactor) is a pool type sodium cooled fast reactor with 
a thermal power of 392.1 MW which has been 
developed in accord with an enhanced safety, an 
efficient utilization of uranium resources and a 
reduction of a high level waste volume in the Korea 
Atomic Energy Research Institute (KAERI) since 2012 
under a National Nuclear R&D Program. The PGSFR 
has an inherent safety characteristic owing to the design 
to have a negative power reactivity coefficient during 
all operation modes and it has a passive safety 
characteristic due to the design of a passive decay heat 
removal circuit. For an evaluation of the safety features 
of the PGSFR, a sensitivity analysis has been 
performed for a pipe break accident which is one of the 
most important DBEs in the PGSFR. For a sensitivity 
analysis, some design variables are applied to be 
conservative. An effect of uncertainties is evaluated on 
a Doppler reactivity and a sodium density. Sensitivity 
studies have been also performed to find the most 
conservative condition for an air flow rate and an air 
temperature. The results of the sensitivity analysis 
provide a cumulative damage function (CDF) which is 
related to a fuel damage or threat to its structural 
integrity during the transients for the considered DBEs.  

 
2. Analysis Methods 

 
Figure 1 describes a nodalization of the PSGFR 

applied to the MARS-LMR code. The PGSFR is 
composed of a Primary Heat Transport System (PHTS), 
an Intermediate Heat Transport System (IHTS), a 
Steam Generating system (SG) and a safety-grade 
decay heat removal system (DHRS). The DHRS is 
composed of two units of Passive Decay-heat Removal 
Circuits (PDRCs) and two units of Active Decay-heat 
Removal Circuits (ADRCs).  

As shown in the nodalization, two main pumps take 
sodium from a pool and discharge it into inlet pipes in 
the primary system. Then the sodium flows into an inlet 
plenum where one of the inlet pipes is assumed to be 
broken as an initial event.  

The pipe break event was analyzed using MARS-
LMR code. The event was assumed to start at 102% 
power. The ANS-79 model was used for a core decay 
power after a reactor scram. At 5 seconds after the 
reactor trip, SG feed-water lines were isolated and the 

primary and secondary pumps were tripped 
corresponding to a loss of off-site power (LOOP). One 
independent PDRC and one ADRC were assumed to be 
available in accordance with a single failure criterion 
and maintenance. AHX and FHX dampers were 
assumed to be open at 5 seconds after the reactor trip. 

 

 
 

Figure 1 Nodalization of the PGSFR 
 
In this simulation, each unit of the DHRS can remove 

0.625% of a nominal power. The ADRC can also be 
operated in a passive mode, which corresponds to 
0.3125% heat removals.  

Table 1 depicts a reactor protection signals and their 
set-points. The reactor is scrammed by a high power to 
PHTS flow ratio of 121.4 %, high core outlet 
temperature of 570.9 ℃, high core inlet temperature of 
415.9 ℃, high SG shell outlet temperature of 364.9 ℃, 
or low hot pool level of 30 cm below from a normal 
level. 

 
Table 1. Reactor protection signal and set-point  
Parameter Set-point (Uncertainty) 
High core outlet 
temperature  

565℃ (±5.9 ℃) 

High core inlet 
temperature  

410℃ (±5.9 ℃) 

High power to PHTS flow 
ratio  

119 % (±2.4 %) 

SG shell outlet 
temperature  

359 ℃ (±5.9 ℃) 

Low hot pool level 
 

20 cm below 100% 
operating level (±10 cm) 
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A safety acceptance criterion for a safety analysis of 

the PGSFR is evaluated on the CDF which is dependent 
on some parameters such as cladding thickness, fuel gas 
plenum pressure, burn-up rate, pin power, etc. This 
CDF model is applied to the MARS-LMR code. 0.05 is 
used as a limit of the pipe break event.    

 
3. Transient Results of Pipe Break Accident 

 
The primary coolant flows into the inlet plenum from 

four pipes connected with two PHTS pumps. The 
primary pipe break accident was assumed to be initiated 
from a pipe break of one of the four pipes. The flow 
through the broken pipe is discharged into a cold pool.  

An imbalance between the reactor power and primary 
flow is a main safety concern of the pipe break event. 
To prevent an occurrence of a severe imbalance 
between the power and flow, the reactor was designed 
to be tripped by a high power/flow trip.  

In this simulation, the accident occurs at 10 seconds. 
A reactor is scrammed at 17.5 seconds by a high power 
trip and the reactor power and primary flow decreased. 
The power decreased drastically owing to the reactor 
trip, and the cladding temperature showed the highest 
value. Figs. 2 and 3 show a cladding mid-wall 
temperatures and coolant temperatures through a core 
during the pipe break accident, respectively. The initial 
cladding temperature increases due to a decrease of 
sodium flux into the reactor core as shown in Fig. 4.  

Both PHTS pumps and IHTS pumps are stopped with 
an assumption of the LOOP at the same time of the 
reactor trip. Therefore, a residual heat removal is 
achieved only by an evaporation of water in SG tubes 
and by the DHRS. Fig. 5 shows heat removals by SGs, 
which decrease rapidly due to a feedwater isolation. 
Water inside of SG tubes is left until about 1000 
seconds.  

Fig. 6 compares a decay heat removal rate of the 
DHRS with the reactor power. After about 6500 
seconds, the amount of heat removals by the DHRS is 
higher than a core residual heat production, and a core 
outlet temperature decreased continuously.  

 

1 10 100 1000 10000 100000
600

700

800

900

1000

1100

1200

1300

 

 

Pipe Break with LOOP
 5th node of HP
 6th node of HP
 7th node of HP
 8th node of HP

C
la

d 
M

id
-W

al
l T

em
pe

ra
tu

re
, K

Time, sec

 
Figure 2 Clad mid-wall temperature change during PB 
accident  
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 Figure 3 Coolant temperature change during PB accident 
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 Figure 4 Flow rates through core channels during PB 
accident 
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 Figure 5 Heat removals by SGs during PB accident 
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Figure 6 Heat removals by DHRS compared with decay 
power during PB accident 
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Figure 7 Calculated CDF during Pipe Break accident 
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 Figure 8 Power to flow ratio in comparison P/Q with 
P/Q{=f(d P)} 
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Figure 9 Clad mid-wall temperature during PB accident 
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Figure 10 Calculated CDF in comparison P/Q with P/Q{=f(d 
P)} 

Fig. 7 shows the calculated CDF during the PB 
accident. Immediately after a pipe was broken, the CDF 
is drastically increased and then it goes over 0.05. 
Therefore, a faster detection is needed to prevent the 
fuel damage. A method of extracting the PHTS flow 
rate from a pressure drop was used instead of a 
measurement of the PHTS flow rate. A correlation 
between a pressure drop and a PHTS flow rate is 
indicated in a following equation (1).  The pressure 
drop is estimated as the difference from a core exit to a 
PHTS pump discharge chamber. 

 
Qf=(dP/dPnominal)

0.56               (1) 
 
Where,  dP=Ppump_discharge_chamber – Pcore_exit 

 
The analysis results using the method of extracting 

the PHTS flow rate from the pressure drop, is shown in 
Figs. 8 to 10. Immediately after a pipe was broken, the 
reactor is tripped faster than the previous result, and 
then the CDF is calculated under 0.05. Therefore, it is 
concluded that a faster detection is important in a pipe 
break accident. Based on this result, a sensitivity 
analysis was also performed to find the most 
conservative condition. 

 
4.  Sensitivity Analysis 

 
For the sensitivity analysis, some design variables are 

applied to be conservative. Table 3 shows a range of 
design parameters and reactivity parameters with their 
uncertainties. An air flow rate, air temperature, Doppler 
reactivity, and density reactivity are selected for the 
sensitivity variables.  

 
Table 3. The range of sensitivity parameters  
Parameter Range Uncertainty 

Air flow rate -50%~100% 50% 

Air temperature 10℃~ 50℃  

Doppler reactivity -15% ~ 15% 15% 

Density reactivity -20% ~ 20%     20% 

 
Figs. 11 to 13 show the results for the sensitivity 

calculations. As shown in the Figs., the CDF is not 
sensitive for the variation of the air temperature, 
Doppler reactivity, and density reactivity but the 
variation of the air flow rate affects more severely on 
the CDF. The less air flows into the AHX, the less heat 
removal is achieved, and then the larger CDF is 
calculated. Therefore, it is concluded that the air flow 
rate is the most sensitive and conservative variable in 
the pipe break accident, and then it is important to 
know an accurate uncertainty of the variable. 
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 Figure 11 Calculated CDF versus air flow rate 
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Figure 12 Calculated CDF versus air temperature 
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 Figure 13 Calculated CDF versus reactivity feedback 
 

5. Conclusions 
 

In order to assess the inherent safety features of the 
PGSFR, a safety analysis was performed for a pipe 
break accident with MARS-LMR. And, the sensitivity 
studies were also performed to find the most 
conservative condition. As a result, the PGSFR was 
appropriately tripped by a high power to PHTS flow 
ratio using the method of extracting the PHTS flow rate 
from the pressure drop. The air flow rate was the most 
sensitive variable in the sensitivity analysis. Therefore, 
it is important to know the accurate uncertainty of the 
air flow rate in the AHX. 
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