Conceptual System Design of a Supercritical CO₂ cooled Micro Modular Reactor

Seong Gu Kim^a, Bongseong Oh^a, Seung Joon Baik^a, Hwanyeal Yu^a, Yonghee Kim^a, Jeong Ik Lee^a ^aDept. Nuclear & Quantum Eng., KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea *Corresponding author : jeongiklee@kaist.ac.kr

1. Introduction

The pre-developed small modular reactor (SMR) concepts showed quite compact size than the large nuclear power plants. However, those concepts have not reached fully modularization Therefore, the authors suggest a concept to replace existing steam Rankine cycle, with the supercritical CO_2 (S- CO_2) Brayton cycle for complete modularization of the whole nuclear system.

The S-CO₂ Brayton cycle has many advantages for SMR's power conversion system. The S-CO₂ cycle can achieve small component size and simple cycle layout as shown in Fig. 1 [1]. Therefore, a concept of one module containing the S-CO₂ cooled fast reactor core and power conversion system is realizable. Thanks to the compact heat exchanger technology such as Printed Circuit Heat Exchanger (PCHE), the supercritical fluid with mediocre heat transfer performance can be utilized to a thermal cycle. This concept of fully modularized reactor is named as KAIST Micro Modular Reactor (MMR). It can achieve large economic by production in series, and transported in the land way or sea way.

Fig. 1. Size of $S-CO_2$ turbine in comparison to the steam and helium turbine [1].

Fig. 2. Schematic figure of KAIST MMR.

2. Reactor Core Design

The reactor core for MMR is designed by neutronic analysis with MCNP code, Serpent [2]. Each fuel assembly consists of 127 fuel pins. The diameter of the pin is 1.5cm and P/D ratio is 1.13. Fig. 3 shows a configuration of the core. The drum type control rod is used as primary control rod since the core size can be more compact than the insert type control rod. Table 1 shows the design parameters of KAIST MMR [3].

Fig. 3. Radial and axial configuration of the reactor core.

Table 1. Design parameters of KAIST MMR.

Item	Value	
Core Thermal Power	36.2 MWth	
Life time	20 years	
Number of Fuel Assemblies	18	
Active core equivalent radius / height	46.58 cm / 120 cm	
Whole core equivalent radius / height	82 cm / 280 cm	
Coolant pressure / velocity	20 MPa / 6.9 m/s	
Coolant inlet and outlet Temp.	655.4 K / 823.2 K	
Total weight of core	39.6 ton	
Averaged discharged burnup	51.6 GWd/MTHM	
Power density	88.23 W/cc	
Fuel enrichment	15.5 ^w / _o U ¹⁵ N fuel	

2. Design of S-CO₂ Power Conversion Cycle

The direct cycle configuration was chosen for the MMR to achieve simple layout and light-weight module. An in-house cycle design code KAIST-CCD was used to design S-CO₂ Brayton cycles. The simple recuperated S-CO₂ Brayton cycle, and recompressing recuperated S-CO₂ Brayton cycle were considered for the power conversion cycles for MMR. These cycle layouts and operating conditions are shown in Fig. 4. The target performance and module size of MMR are listed in Table 3. The top pressure of the cycle was determined by performing a cycle optimization study. The compressor inlet temperature was determined to be

 60° C for the air cooling capability of pre-cooler cold side. The CO₂-Air heat exchanger connected to the pre-cooler cold side was proposed to achieve dry air-cooling capability [4].

To find an optimum top pressure at the fixed compressor inlet pressure (7.5MPa), the net cycle efficiency versus pressure ratio was found by using cycle design code, KAIST-CCD. The component efficiencies of compressor and turbine were assumed to be 85% and 92%, respectively [5]. The estimated size and efficiency of tubomachineries were obtained by KAIST-TMS radial. This in-house code utilizes Balje's n_s - d_s diagram to determine the impeller diameter and isentropic efficiency. The NIST REFPROP database for thermodynamic properties is coupled to this design code. The maximum net cycle efficiencies appeared at the pressure ratio of 2.62 and 1.81 in the simple recuperated cycle, and the recompressing cycle, respectively.

Fig. 4. Schematic figure of simple recuperated, and recompressing S-CO₂ Brayton cycle.

Table 2.	Target	performance	and size.
----------	--------	-------------	-----------

Electric power output	10-12 MWe
Turbine inlet temperature	550.0℃
Compressor inlet temperature	60.0°C
Total Weight	Mass < 250ton
Total Height	Height < 7m
Cylindrical diameter	Diameter < 4m
Pre-cooler cold side coolant	CO ₂ , 45 °C
Outside heat exchanger coolant	Air, 25 °C

Fig. 5. Net cycle efficiencies of simple recuperated cycle and recompressing recuperated cycle with respect to pressure ratio.

Based on the optimized cycle condition, the radial type single-stage compressors and turbine coupled to single shaft was employed. The performance and size of heat exchangers were computed by using the KAIST- HXD, which is an in-house code utilizing the heat transfer coefficient and friction factor correlations for Printed Circuit Heat Exchanger. The set of correlations was developed by performing 3-D CFD analyses [7]. This correlation was compared to the several previous experimental studies of PCHE and compact heat exchangers [6].

As shown in Table 2, the recompressing cycle has a complex layout and large mass of heat exchangers. Due to the large mass flow rate (410 kg/s) of the recompressing cycle, the size of cycle components is larger than that of the simple recuperated cycle. Therefore, the authors propose the simple recuperated cycle as an appropriate power conversion cycle because lightweight module and compact cycle are important for transportable KAIST MMR. Therefore, the designed power conversion system generates 12MWe. The rotating shaft of S-CO₂ turbine and generator is connected to the magnetic coupling and gearbox as shown in Fig. 2 [7].

Table 3. Design results of turbomachineries and heat exchangers for simple recuperated and recompressing cycles.

exchangers for simple recuperated and recompressing cycles.				
	Simple	Recompressing		
	recuperated	recuperated		
	(20MPa)	(14MPa)		
Rotating speed	20,200 rpm	9,800 rpm		
Mass flow rate	175.3 kg/s	345.4 kg/s		
Compressor specific	0.643	0.642 (main)		
speed		0.319 (recomp.)		
Turbine specific speed	0.510	0.502		
Compressor	0.274m	0.438m (main)		
diameter		0.528m (recomp.)		
Turbine diameter	0.323m	0.527m		
Pre-cooler volume	0.309m ³	1.761 m ³		
Pre-cooler length	0.670m	0.810m		
Recuperator volume	0.596m ³	HTR: 1.623 m ³		
<u>^</u>		LTR: 1.193 m ³		
Recuperator length	0.722m	HTR: 0.810m		
		LTR: 0.690m		
Mass of heat	3.8 ton	19.3 ton		
exchangers				
Pre-cooler cold side	97 kg/sec	410 kg/sec		
mass flow rate				
Dimentions of PCHE	Diameter : 1.9mm	Plate thickness : 1.63mm		
	Fin angle : 32.5°			

Table 4. Design result of simple recuperated S-CO₂ Brayton cycle.

cycic.			
Thermal power	36.2 MWth	Mass flow rates	175.34 kg/s
Net electric power	11.99 MWe	Pressure ratio	2.62
Thermal efficiency	33.12%	Compressor outlet pressure	20.0 MPa
Turbine work	22.65 MW	Compressor inlet pressure	7.50 MPa
Compressor work	10.17 MW	Size of pre- cooler	0.3095 m ³ 1.2 ton
Rotating speed	20,200rpm	Size of recuperator	0.5958 m ³ 2.6 ton

Fig. 6. Schematic of KAIST-MMR with CO_2 to air heat exchanger and synchronous generator (60Hz).

VI. ASSESSMENT OF CONCEPTUAL LAYOUT

Based on the design results of the reactor core, power conversion system, and decay heat removal system, the conceptual figure of MMR was made. Including the vessel and structural materials, the mass of reactor core will be increased up to 50 tons. The thickness of double containments was obtained from the pressure vessel thickness formula [8]. The mass of coolant were estimated based on the containment size and CO₂ filled volume at each system pressure. External dimensions of KAIST-MMR are 6.8m in length and 4.0m in diameter. Total weight of MMR module is estimated to be 183 ton as summarized in Table 5. Thus, this module can be transported via ground transportation by module trailer, which has a transportable limit up to 260 ton.

Table 5. Volume and weight of reactor, cycle components, and whole module.

	Dimensions	Volume	Weight
Core	2.8m (H) 1.5m (Dia.)	4.9m ³	50 ton
Pre-cooler	-	0.309m ³	1.2 ton
Recuperator	-	0.596m ³	2.6 ton
Containment material (Outside)	8.3m (L) 3.5m (Dia.) 7cm (T)	7.73m ³	60.7 ton
Containment material (Inside)	7.0m (L) 3.1m (Dia.) 7cm (T)	5.83m ³	45.8 ton
	Outer containment 12.5m ³ (1MPa)		0.2 ton
Coolant	Inner containment 26.4m ³ (5MPa)		2.1 ton
	Coolant 5m ³ (20MPa)		0.6 ton
Turbomachinery & Magnetic gear	-		~10 ton
DHR system	-		~10 ton
Total module	-		183 ton

VII. CONCLUSION AND FUTURE WORKS

An innovative concept of single module with S-CO₂ cooled fast reactor coupled to S-CO₂ Brayton cycle is

proposed. Based on the design results and dimensions of the reactor core and cycle components, the authors propose a conceptual layout of KAIST MMR. Based on this concept of reactor core, power conversion system, and decay heat removal system, the seasonal operation and transient analysis will be performed in the further works. Also, the transient analysis for load following, and safety analysis will be followed.

ACKNOWLEDGEMENT

Authors gratefully acknowledge that this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)

REFERENCES

[1] V. Dostal, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Ph. D. Thesis, Massachusetts Institute of Technology, 2004.

[2] J. Leppänen, *Serpent - A Continuous-energy Monte Carlo Reactor Physics Calculation Code*, VTT Technical Research Centre of Finland, 2013.

[3] Hwanyeal Yu, Donny Hartano, Yonghee Kim, A Conceptual Study on a Supercritical CO2-cooled Micro Modular Reactor, HTR2014, Weihai, China, October 27-31.

[4] S. J. Baik, S. J. Bae, S. G. Kim, J. I. Lee, Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling, Transactions of the Korean Nuclear Society Spring Meeing, Jeju, Korea, May 29-30, 2014.

[5] S. Cho, S. G. Kim, J. Lee, J. I. Lee, Conceptual Design of S-CO2 Brayton Cycle Radial Turbomachinery for KAIST Micro Modular Reactor, Transactions of Korean Nuclear Society Spring Meeting, Jeju, Korea, May 29-30, 2014.

[6] S. G. Kim, Y. Lee, Y. Ahn, J. I. Lee, CFD aided Approach to Design Printed Circuit Heat Exchangers for Supercritical CO2 Brayton Cycle Application, Int. Journal of Thermal Sciences (2015) (Submitted)

[7] K. Atallah, S. D. Calverley, D. Howe, Design, Analysis and Realisation of a High-performance Magnetic Gear, IEE Proc.-Elecr. Power Appl., Vol. 151, No. 2, March 2004, pp.135-143.

[8] James. M. Gere, Mechanics of Materials 6th edition, CENGAGE Learning.