
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

New algorithm to detect modules in a fault tree for a PSA

Woo Sik Junga

a Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul 143-747, South Korea

1. Introduction
A module or independent subtree is a part of a fault

tree whose child gates or basic events are not repeated in
the remaining part of the fault tree. Modules are
necessarily employed in order to reduce the
computational costs of fault tree quantification. This
paper presents a new linear time algorithm to detect
modules of large fault trees. The size of cut sets can be
substantially reduced by replacing independent subtrees
in a fault tree with super-components.

Chatterjee [1] and Birnbaum [2] developed properties

of modules, and demonstrated their use in the fault tree
analysis. Locks [3] expanded the concept of modules to
non-coherent fault trees. Independent subtrees were
manually identified while coding a fault tree for
computer analysis [4]. However, nowadays, the
independent subtrees are automatically identified by the
fault tree solver [5].

A Dutuit and Rauzy (DR) algorithm to detect modules

of a fault tree for coherent or non-coherent fault tree was
proposed in 1996 [6]. It has been well known that this
algorithm quickly detects modules since it is a linear time
algorithm.

2. Definitions and DR method [6]
A fault tree has terminal events (basic events),

intermediate events (gates), and top event(s). A fault tree
thus has logical interrelationships of basic events that
lead to single or multiple top events. Basic events are
elementary component failures, and top event is a system
failure. The basic assumption of a fault tree is that basic
events are mutually independent. Failures of components,
that is, basic events are logically propagated to the top
event through the nested logical gates. Fig. 1 depicts a
small fault tree that is used throughout this paper. In this
study, a single top event is assumed instead of multiple
tops.

�������(�) is a set of nodes (gates or basic events)

that are reachable downward way from a node � [6], and
��������(�) is further defined in this study as a set of
nodes that are reachable from the root node (top event)
without visiting a node �.

A module is defined as a gate whose terminal or

intermediate events do not occur elsewhere in a fault tree
[6]. In other words, a node � is a module if there is no
other downward way from the root node to any node in
�����(�) without visiting � . That is, a node � is a
module if the relation is satisfied

�������(�) ∩ 	��������(�) = Φ (1)

Top event � is always a module since ��������(�) is an
empty set.

Dutuit and Rauzy [6] proposed an efficient module

detection algorithm (DR method) that is based on the
depth-first leftmost traversal of a fault tree. The visiting
steps to nodes are written along the connecting lines of
nodes in Fig. 1. In this paper, the node index (numbers in
the node names) is increased according to the first
visiting order.

Visiting steps ����������(�) , �����������(�) , and

���������(�) are introduced for the explanation of the DR
method [6]. Additionally, the steps such as ��������(�)
and ��������(�) are also defined as

��������(�) = min
�∈�������(�)

����������(�)	 (2)

��������(�) = max
�∈�������(�)

���������(�). (3)

In the DR method, a node � is a module if its visiting
steps satisfy the inequalities

����������(�) < 	��������(�) <

��������(�) < �����������(�). (4)

All visiting steps for nodes can be easily found by

tracing the depth-first leftmost traversal of the fault tree
in Fig. 1. Since visiting steps of {g0, g3, g6} satisfy the
inequalities of the module definition in Eq. (4), they are
modules of the fault tree in Fig. 1 as

������(�0) = {�0, �3, �6}

Fig. 1. DR method to find modules [6]

g0

g1 e13

g3

e4 e5

g6

e7 e8

g10

e11 e12

g2 g9

g3

e13

1 25

2

3

4

5 6

7

9 10 16 17 18

15

14

118

12

19

2013

21

22 23

g3

24

e12

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 7-8, 2015

3. New algorithm to find modules

All nodes are visited along a depth-first leftmost
traversal. The traversal starts and finally ends at the root
node with zero module measures. For clear explanation
of the new algorithm, the numbers in node names are
increased along the traversal.

For efficient module detection, module measures are
newly introduced in this study. In this study, repeated
number of a node � in a fault tree is defined in this study
as �����(�). When leaving a repeated node � for the
first time and going to next node �, module measures are
increased one time as

���/���(�) = ����(�) + (�����(�) − 1) (5)

���/���(�) = ����(�) + (�����(�) − 1)�� . (6)

Whenever leaving this repeated node � from the second
time and going to next node w, module measures are
decreased stepwise as

���/���(�) = ����(�) − 1 (7)

���/���(�) = ����(�) − �� . (8)

In Eqs. (6) and (8), ��	is an integer value as
�� = � . (9)

In Eqs. (5) to (9), ���/���(�) is one of ���(�) and

����(�) , and ���/���(�) denotes one of ���(�) and

����(�).

If there are no changes in the module measures between

entering and leaving a gate �	
���(�) = ����(�) (10)
���(�) = ����(�) , (11)

the gate � is a module of the fault tree.

Fig. 2. New method to find modules

Changes of module measures ���(�) and ����(�)	are

illustrated in Fig. 2. Furthermore, their variations along
the traversal in a whole fault tree are depicted in Fig. 2
and listed in Table 1. Module measures are increased by

Eqs. (5) and (6) one time when leaving repeated nodes
such as {g3, e12, e13} for the first time, and decreased
stepwise by Eqs. (7) and (8) whenever leaving repeated
nodes such as {g3, e12, e13} the other time. However,
there are no changes in module measure when leaving
non-repeated nodes.

Table 1. Module identification

4. Conclusions
The new algorithm minimizes computational memory

and quickly detects modules. Furthermore, it can be
easily implemented into industry fault tree solvers that
are based on traditional Boolean algebra, binary decision
diagrams (BDDs), or Zero-suppressed BDDs.

The new algorithm employs only two scalar variables

in Eqs. (5) to (8) that are volatile information. After
finishing the traversal and module detection of each node,
the volatile information is destroyed. Thus, the new
algorithm does not employ any other additional
computational memory and operations. It is
recommended that this method be implemented into fault
tree solvers for efficient probabilistic safety assessment
(PSA) of nuclear power plants.

REFERENCES
[1] P. Chatterjee, “Modularization of fault trees: A
method to reduce the cost of analysis”, Reliability and
Fault Tree Analysis, SIAM, pp 101-137, 1975.
[2] Z.W. Birnbaum and J. P. Esary, “Modules of
Coherent Binary Systems,” SIAM J Appl. Math., Vol. 13,
pp. 442–462, 1965.
[3] O.M. Locks, “Modularizing, Minimizing, and
Interpreting the K & H Fault-Tree,” IEEE Transactions
on Reliability, Vol. R-30, no. 5, pp. 411–415, 1981.
[4] U.S. NRC, Reactor safety study - an assessment of
accident risk in U.S. commercial nuclear power plants,
WASH-1400, NUREG-75/014, 1975.
[5] W.S. Jung, “ZBDD algorithm features for an efficient
Probabilistic Safety Assessment,” Nuclear Engineering
and Design, Vol. 239, pp. 2085–2092, 2009.
[6] Y. Dutuit and A. Rauzy, “A Linear Time Algorithm
to Find Modules of Fault Trees,” IEEE Transactions on
Reliability, Vol. 45, no. 3, pp. 422–425, 1996.

g0

g1 e13

g3

e4 e5

g6

e7 e8

g10

e11 e12

g2 g9

g3

e13

g3 e12

00

3+12+13 12+13
(c)

13

3+12+13

3+12+13

23

23
3
(b)

3+12+133
3 3+12

23 23
23

0 0

0

23
(a)

230

0

