# Design Case Studies of Anti-scattering X-ray Grid by MCNP Code Simulation

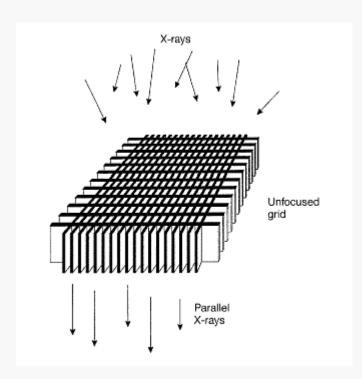


**UNIST** 

7<sup>th</sup> May, 2015 Jun Woo Bae






#### Contents

- Introduction
- **❖** Design
- \*Results & Discussion
- Conclusion
- References





### Introduction



X-ray anti-scattering grid:

- In X-ray imaging system, X-ray interacts with tissue of body and is scattered.
- So proper grid which can reduce the scattered photon should be equipped in the X-ray image system.

Fig. 1. Schematic of a unfocused grid with parallel walls.





### Introduction

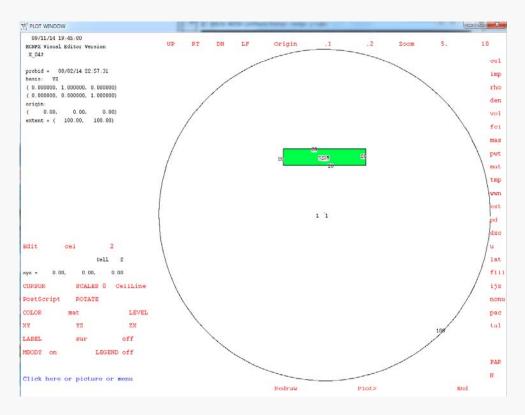



Fig. 2. Basic MCNPX plot window.

#### MCNP:

- MCNP is a radiation transport and tracking code.
- MCNP can build up various customized geometry and material and source types.





## Simulation Design

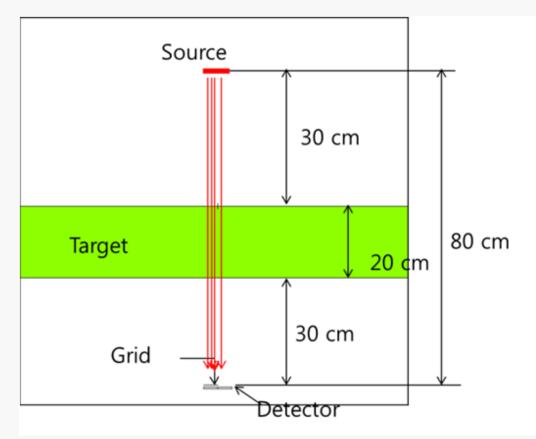



Fig. 3. The simulation geometry.

Fig 3. shows overall view of the simulation geometry that consists of four parts; **source**, **target**, **detector** and **grid**.

- **The source** was placed above 30 cm from the target.
- The source was 80 keV single energy photon area source and the photon had direction to the grid and detector normally.





## Simulation Design

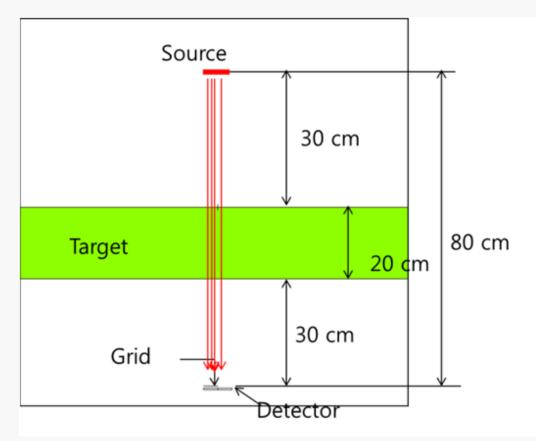



Fig. 3. The simulation geometry.

#### (continued)

- The target had height of 20 cm and grid and was placed above 30 cm from the grid.
- **The target** was composed of H<sub>2</sub>O and had density of 1.00 g/cm<sup>3</sup>.





## Simulation Design

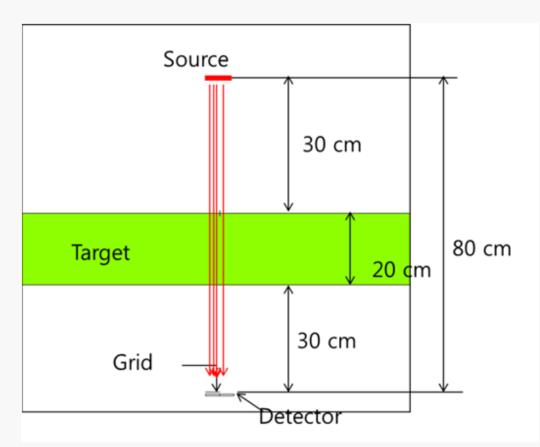



Fig. 3. The simulation geometry.

(continued)

- The detector was a 8 cm × 4 cm × 1 mm rectangular void cell.
- The grid was placed only placed on the left (x<0) side of detector because of comparison between data with grid and without grid.





## Grid Design

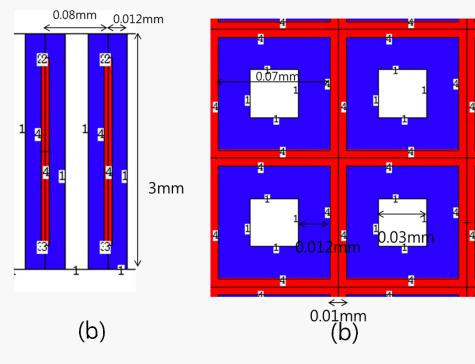


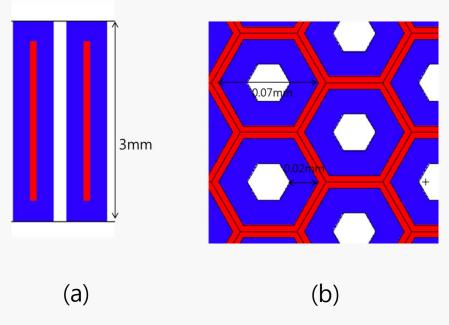

Fig. 4. The geometry of square-type grid.

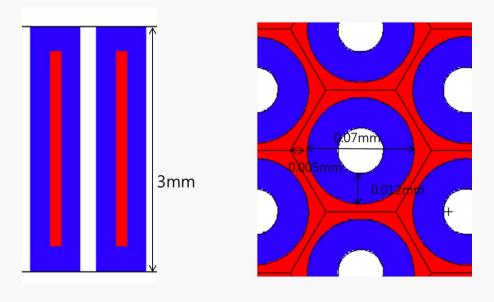
- The whole grid shape was 4 cm
  × 4 cm square and thickness
  (z-direction) is 3 mm.
- The red part represents glass, the frame structure, and the blue part gold, the shielding material which had 19.3 g/cm<sup>3</sup> of density.
- For square-type, length of a lattice cell was 0.08 mm.
- The thickness of frame structure was 0.005 mm and thickness of shielding material was 0.012 mm.





### Grid Design





Fig. 5. The geometry of honeycombtype grid.

- For honeycomb-type, it was hexagonal repeated lattice.
- Length of a side of hexagon was 0.040 mm.
- Thicknesses of frames structure and shielding material were 0.005 mm and 0.012 mm for each cell, respectively.
- The thickness of shielding material varied in optimization study.





### Grid Design



- For circle-type, it was hexagonal repeated lattice.
- Diameter of a circle was 0.07 mm. Frame structure was filled among each cell.
- Thickness of shielding material was 0.012 mm.

(a) (b)

Fig. 6. The geometry of circle-type grid.





- First, shielding material thickness optimization was conducted.
- By using energy distribution tally, recorded photon was classified by two parts. The one is 0~79.999 keV which means scattered photon, and the other one is 79.999~80keV which means primary photon.
- S/P (scattered to primary ratio) is a criterion of performance of grid. If S/P is lower, which means scattered photons are relatively fewer, the performance is higher.
- The condition of grid was as following;
  - For a side length 0.035 mm, thickness of shielding material for 1~25 µm was conducted.
  - For a side length 0.040 mm, thickness of shielding material for 1~15 µm was conducted.
  - For a side length 0.045 mm, thickness of shielding material for  $1\sim20$  µm was conducted.





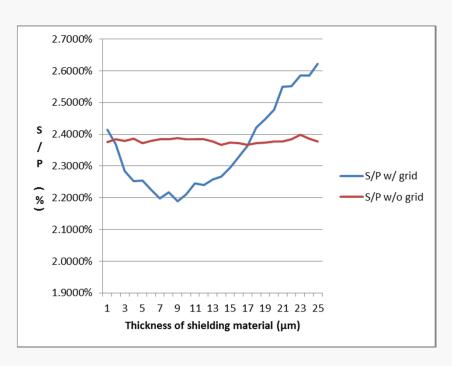



Fig. 7. The S/P (%) according to the thickness of shielding material (µm) for honeycomb-type (length of a side of hexagon : 0.035 mm)

- When length of a side was 0.035 mm, S/P was minimum when the thickness was 7~9 μm.
- If the thickness of shielding material was increased too much (>17 µm) S/P with gird is higher than S/P without grid, which means the grid makes the image quality worse.





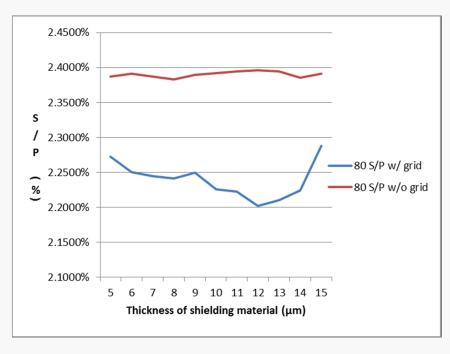



Fig. 8. The S/P (%) according to the thickness of shielding material ( $\mu$ m) for honeycomb-type (length of a side of hexagon : 0.040 mm).

 When length of a side was 0.040 mm, S/P was minimum when the thickness was 12 μm.





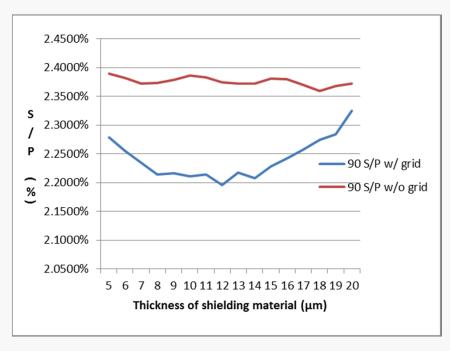



Fig. 9. The S/P (%) according to the thickness of shielding material (µm) for honeycomb-type (length of a side of hexagon : 0.045 mm)

 When length of a side was 0.045 mm, S/P was minimum when the thickness was 11~13 μm.





- S/P had minimum value at 10~12 μm.
- The minimum S/P point was increased when the length of cell is increased.
- Additionally, comparison for three grid types (square, honeycomb and circle type) was conducted.
- In this simulation, thickness of shielding material was same for 12  $\mu m$ .





Table 1. The simulation result for each type. The number of scattered photon, the number of primary photon and their ratio.

| Туре      | Number of<br>Scattered<br>photon | Number of<br>Primary<br>photon | S/P      |
|-----------|----------------------------------|--------------------------------|----------|
| Square    | 1.68E-05                         | 7.27E-04                       | 2.3070 % |
| Honeycomb | 1.66E-05                         | 7.27E-04                       | 2.2902 % |
| Circle    | 1.75E-05                         | 7.53E-04                       | 2.3203 % |
| None      | 2.41E-05                         | 1.02E-03                       | 2.3558 % |





- All the result had 0.9 % of relative error in simulation.
- The results of three types had no big difference.
  - ✓ Relative difference was less than 1 %
- The circle type had relative high S/P. It was thought that circle type had much glass part which can contribute to photon scatter.
- The ratio of cross-sectional area of glass part when the length of a side is 80 μm is as following:

Square : Honeycomb : Circle = 1:1:3.16

• But this is not efficient to explain.





- cross-sectional area of void part could be a cause because both scattered photons and primary photons are increased. But it is not exactly matched.
- The ratio of cross-sectional area of void part per cell is as following:

Square : Honeycomb : Circle = 
$$1:1:\frac{2\pi}{3\sqrt{3}} \sim 1.21$$





### Conclusion

- ➤ The design case study of anti-scattering X-ray grid was performed for the three designs of square, honeycomb and circle type by MCNP simulation.
- ➤ The optimization of thickness of shielding material was conducted on three cases of the length of a side of hexagon of honeycomb type anti-scattering X-ray grid.
- ➤ It was understood that the performance of grid had **very little dependency** (<1 %) on the **grid geometry type** in this fundamental approach.
- ➤ It was thought the analysis results could be extended to the further study on the thickness optimization for each type and variable selection.





#### References

[1] A. Dowling, T. Kenny, J. Malone "Acritical overview of acceptance testing using various measured indices", Radiation Protection Dosimetry, **94** (2001) 53-58 [2] Rebecca Fahrig, James G. Mainprize, Normand Robert, "Performance of glass fiber antiscatter devices at mammographic energies" **21** (1994) 1277-1282 [3] C.-M. Tang, E. Stier, K. Fischer, H. Guckel "Antiscattering X-ray grid", icrosystem Technologies, **4** (1998) 187-192

[4] Los Alamos National Laboratory, "MCNP – a general monte Carlo N-Particle Transport Code version 5" (2008)

