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1. Introduction

TRISO particle is used for a high temperature gas
cooled reactor. There are few billions of TRISO
particles in a reactor core. It is practically impossible to
use a detailed model for diffusion calculations such as
temperature or neutron flux analysis.

It is necessary to develop a homogenization model
for compact level or block level calculation. It is widely
accepted to obtain a (flux-) volume average of inverse
of diffusion coefficient such as the neutron diffusion
coefficient or the thermal conductivity as an analogy to
the neutron transport cross section. However there are
large difference in the averaged conductivity when the
structure is  highly  heterogeneous.  Effective
conductivity model derived by Maxwell[1] for
dispersed particles in a matrix is widely accepted for
accurate conductivity calculation. Stainsby[2,3] and
Folsom[4] used a detailed finite element model to find
the effective conductivity. Cho et al. [5] have developed
a two-temperature model based on empirical solution
using the Monte Carlo simulations. Cho’s method gives
a quite reasonable result for practical application.
However, Cho’s method is not accurate in the sense that
a Monte Carlo method is based on the Fredholm
integral equation, and a diffusion equation cannot be
converted into a Fredholm equation rigorously.

Two scale asymptotic expansion method for periodic
problem was developed by Bensoussan et al [6]. This
method converges to accurate solution when periodicity
is great. Recently, Allaire applied the homogenization
of the elliptic problem on periodic structures in various
fields, such as the thermal conduction problem [7], and
the neutron diffusion equation [8].

2. Two scale asymptotic expansion method

We have extended the original two scale asymptotic
expansion method for periodic source problems such as
TRISO particles in a pebble fuel or in a compact where
heat source are present. The heat source is almost
periodic considering that the neutron diffusion length is
sufficiently large comparing the size of TRISO.

Thermal conduction equation in a periodic structure
with periodic heat source is written as following.

~V(kVg,)="f, , where k is a conductivity
tensor.

For a periodic structure, we can separate the variables
in two independent variables, a slowly varying X and a

periodically varying Y. Y can be written as X/ & for
convenience. Now, the heat source will be written as;
f,=f(x)+ef(x,x/¢)

Solution is approximated by an asymptotic series
expansion;

6. (X) = (X)+ed (X, X/ &)+ &4, (X, X/ &) +--- .

Wesay f_ and @, is Y-periodic.

Considering that the derivative can be expressed as
sum of a slowly varying variable and a periodic variable
as;
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Using operator notation, we can expand the diffusion
operator as:

A =-VKV=¢?A+e A+ A+,
where,
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We can write the original 'equation as
Ad, =0,
Ad + Ay = fl’
Ad, + Ag + Ag, = fo '

etc.
First equation is trivial one where @, is only

dependenton X not Y .
The second equation reduces to

_ 9 ()
Ag = ayj kij (y) 8XJ- + fl(y) :

Let us introduce auxiliary functions a)j(y) and

(//( y) which are Y-periodic, satisfying;
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and

Ay =1, ( y) -
Then the general solution is written as;
o)
- ) 9%
OX;
The last equation can be integrated over a periodic
region'Y.

[ (A +Ag)dy =] fody =|¥|f,
This can be explictly written as
0|,~0
—— |k 9% |_ f,
OX; OX;
with the homogenized conductivity tensor

K EﬁL k(6 +Va')(8 +Val)dy

) ty .

where €' is unit vector in I -direction.
In summary, @, is a Y-periodic solution of

-V (k (éi +Vao' )) = 0 with boundary condition

(6+Va')-A=0.
This can be rewritten as
-V (kVa')=-V(ké')

We have to find the Weiglhting functions for each
direction, x, y, and z.
The equation for Y-periodic |/ satisfies;

—V(kV w) = f, with periodic boundary condition.
Above equation has unique solution if and only if

jY fdy=0.
We can obtain the detailed solution as;
. 8¢
=¢-> o'+
¢5 ¢O ZJ: aX l//

]

This result is similar to Bensoussan’s original
derivation except a correction term for local periodic
source term contribution . Above four equations can

be solved as a same linear matrix equation with
different source terms.

3. Comparison with Maxwell’s method

Folsom has made a detailed study on the effective
conductivity problem of realistic TRISO particles using
the finite element method.[4] We compared the two
scale asymptotic model using typical PBMR TRISO
parameters used by Stainsby and Folsom as shown at
Table 1.

Table 1. TRISO parameters

material radius (cm) C(()c\?/lé?r?/\r/;;y
kernel 0.0250 0.037
buffer 0.0345 0.005
iPyC 0.0385 0.040
SiC 0.0420 0.160
oPyC 0.0460 0.040
matrix PF=0.09344 0.15

Maxwell’s model is written as [2];

3Kk + (2K, +k, )k, (1-a)

T Bka+(2k, +k,)(1-a)

where o is the packing fraction and K, , K

m o and

kp is the effective, matrix, and particle conductivity,

respectively.
It is not easy to find the effective TRISO

conductivity Kk, . Stainsby has determined k | using

analytic solution on a spherical symmetric TRISO
problem as 0.041328 W/m/K[2, App. C]. For given
packing fraction, Maxwell’s formula gives 0.1370
W/cm/K. More precise finite element calculation by
Folsom gives 0.1375 W/cm//K.[4]

A pebble fuel used in a PBMR is composed of
randomly distributed TRISO particles. However it can
be modeled as a periodic body centered cubic (BCC)
lattice considering that the temperature variation outside
of TRISO particle is relatively small.

We have made a BCC model to find the
homogenized conductivity and local temperature
variation due to heat generation at kernel region. We
used a finite element method with cubic elements and
quadratic Lagrange polynomial (L2) basis to solve the
spherical TRISO.

In this case, the conductivity is a scalar and the
geometry has symmetry in x-, y-, and z-directions, the
weighting functions are symmetric and the effective
conductivity is a scalar.

Cubic lattice calculation has a difficulty in cutting
spherical boundary. To improve the error due to
nodalization, we take the average of conductivities for
different materials in the computational element when
spherical boundaries intersect. We have compared two
methods of averaging, one by volume average and the
other by harmonic average.

Figure 1 displays the results with varying meshes.
Figure 1 shows poor convergence of the harmonic
average method. We have adopted the volume average
method in succeeding analysis which converges rather
fast.
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Figure 1. Homogenized conductivity by inverse number
of nodes in a direction

Effective conductivity computed by two scale
asymptotic expansion method is compared with Folsom
as shown at Table 2.

Table 2. Effective conductivity

N Effective conductivity Relative error
(W/ecm/K) (%) t0 0.1375

4 0.1400 1.85

8 0.1385 0.73

16 0.1381 0.47

32 0.1375 0.04

64 0.1372 0.21

Result of the two scale asymptotic method
converges to that of Maxwell method. Larger error at
fewer elements is mostly due to discretization error
corresponding cubic section of spherical shape.

4. Application to Pebble fuel problem
Dimension and conductivities are adopted from
Cho’s paper[5] for the convenience of comparison of
the results. Table 3 displays parameters used in this

analysis.

Table 3. Fuel pebble parameters

Power/pebble (W) 1893.94

No. of TRISO in a pebble | 9315 (PF=0.057162)

Materials kernel/buffer/iPYC/SiC/
oPyC/matrix/shell

Radius (cm) 0.025/0.03425/0.03824/
0.04177/0.04577/2.5/3.0

Conductivity (W/cm K) 8'82;‘(;3/2%?01’20504/ 0.183/

Helium Temperature (K) 1173

Heat transfer coefficient

(W/em?K) 0.01006

Figure 2 displays the shape of the conductivity

weighting function @” in the BCC lattice. It apparently
shows periodic shape as well as anti-symmetry along
the central plane vertical to the x-axis. The magnitude is

high at coating layers of TRISO and is decreasing as
away from the center of TRISO.

Figure 3 displays local Y-periodic temperature
distribution. The temperature distribution should be
spherical near the center of TRISO particle. However,
due to cubic element nodalization, the temperature
distribution appears as cubic which will be disappear as
number of mesh increases.

i
Figure 2. Conductivity weighting function @” in BCC
lattice. (Up: central plane, Down: edge plane)

Table 4 displays the result with varying number of
elements. The conductivity is a scalar due to symmetry
in X-, y-, and z-direction.

Table 4 shows convergent behavior as finite element
discretization becomes fine. Homogenized conductivity
converges rather rapidly comparing the peak value.
Slow convergence in i is due to cubic nodalization in
which heat generation and conductivity is smoothed.

We may adopt the homogenized conductivity as
0.2347 Wicm/K.
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Table 4. Homogenized conductivity and maximum

value of i/
N k* (W/cm/K) W peak (K)
3 0.239549 0.079
4 0.238245 0.450
6 0.236863 1.610
8 0.235964 5.586
10 0.235878 11.414
16 0.235288 16.291
32 0.234925 23.160
64 0.234689 25.802

'l\"ﬁl\ | ||I { .'III | . |’I -

Figuf'e 3. Y-periodic temperature ¥ (Up: cehtral plane,
Down: edge plane)

Using Stainsby’s analytic method, effective TRISO
conductivity is 0.047775 W/cm/K. Stainsby’s Maxwell
method gives the homogenized effective conductivity as
0.2345 W/cm/K which is practically same to present
method. The peak value of ¥ is converging slowly due

to sufficiently. To preserve total power generation in

the problem region, the power density at kernel region
is reduced which results low temperature rise at kernel.
This situation can be improved by refined nodalization
at kernel location. We can estimate the peak value of
Y using the analytic solution assuming spherical

symmetry around a TRISO. The analytic peak value is
found as 28.95 K.

We can construct the heterogeneous temperature
distribution after finding the homogenized temperature
distribution. For our pebble fuel problem, there exists
an analytic solution for the homogenized problem.
Using the homogenized conductivity, 0.2347 W/cm/K,
obtained in present study, we obtain 1380K as the
temperature at the interface between shell and fuel
region and 1508K as homogenized centerline
temperature.

Figure 5 of Cho’s paper[5] reads as 1515K for the
center line temperature and 1380K as the interface
temperature. The value is equivalent to homogenized
conductivity of 0.223 W/cm/K. Present homogenized
conductivity is about 5% higlher comparing the one by
Monte Carlo approach used by Cho.

5. Conclusion and Further Study

Two scale homogenization theory developed by
Bensoussan and applied to various diffusion problem by
Allaire was extended for conductive diffusion problem
with periodic heat source. The result was compared
with Stainsby’s Maxwell method and Cho’s two
temperature model. For multi-materials in a finite
element, the volume average strategy of conductivity
approaches more rapidly.

Further simplification can be achieved by considering
the fact that Y-periodic temperature is strongly varying
only inside TRISO particle which has spherical
symmetry. The weighting function can be computed
with consideration of symmetries in y- and z-direction
as well as anti-symmetry on x-direction. We can also
consider a further simplification using the homogenized
TRISO particle in the BCC lattice.

Present method converges to Maxwell’s method for
TRISO problem by sufficiently large number of
computational elements. Stainsby’s method can be used
for TRISO problem where analytic solution exists.
However, for more complex geometry such as prismatic
fuel block, two scale asymptotic expansion approach
can be used with finite element method to obtain the
weighting functions.

We will extend present method for homogenization
of the prismatic fuel block composed of many fuel
compacts and coolant holes. In this case, the effective
conductivity is a tensor which has non-zero off diagonal
components.

Present method can be applied for the neutron
diffusion problem since the thermal conduction problem
is an elliptic problem like a neutron diffusion problem.

Current flux reconstruction practice which is solving
an eigenvalue problem on an (or several color set)
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assembly may be modified to rather simple group-wise
source problem.
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