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1. Introduction 
 

TRISO particle is used for a high temperature gas 
cooled reactor. There are few billions of TRISO 
particles  in a reactor core. It is practically impossible to 
use a detailed model for diffusion calculations such as 
temperature or neutron flux analysis. 

It is necessary to develop a homogenization model 
for compact level or block level calculation. It is widely 
accepted to obtain a (flux-) volume average of inverse 
of diffusion coefficient such as the neutron diffusion 
coefficient or the thermal conductivity as an analogy to 
the neutron transport cross section. However there are 
large difference in the averaged conductivity when the 
structure is highly heterogeneous. Effective 
conductivity model derived by Maxwell[1] for 
dispersed particles in a matrix is widely accepted for 
accurate conductivity calculation. Stainsby[2,3] and 
Folsom[4] used a detailed finite element model to find 
the effective conductivity. Cho et al. [5] have developed 
a two-temperature model based on empirical solution 
using the Monte Carlo simulations. Cho’s method gives 
a quite reasonable result for practical application. 
However, Cho’s method is not accurate in the sense that 
a Monte Carlo method is based on the Fredholm 
integral equation, and a diffusion equation cannot be 
converted into a Fredholm equation rigorously. 

Two scale asymptotic expansion method for periodic 
problem was developed by Bensoussan et al [6]. This 
method converges to accurate solution when periodicity 
is great. Recently, Allaire applied the homogenization 
of the elliptic problem on periodic structures in various 
fields, such as the thermal conduction problem [7], and 
the neutron diffusion equation [8]. 

 
2. Two scale asymptotic expansion method 

 
We have extended the original two scale asymptotic 

expansion method for periodic source problems such as 
TRISO particles in a pebble fuel or in a compact where 
heat source are present. The heat source is almost 
periodic considering that the neutron diffusion length is 
sufficiently large comparing the size of TRISO. 

Thermal conduction equation in a periodic structure 
with periodic heat source is written as following. 

 k f     , where k  is a conductivity 

tensor. 
For a periodic structure, we can separate the variables 

in two independent variables, a slowly varying x  and a 

periodically varying y . y can be written as /x   for 

convenience. Now, the heat source will be written as; 

   0 1 , /f f x f x x   
.
 

Solution is approximated  by an asymptotic series 
expansion; 

       2
0 1 2, / , /x x x x x x          . 

We say f   and    is Y-periodic.  

Considering that the derivative can be expressed as 
sum of a slowly varying variable and a periodic variable 
as; 

1

j j jx x y
  

 
  

 . 

Using operator notation, we can expand the diffusion 
operator as: 

2 1 0
1 2 3A k A A A            , 

where, 

 1 ij
i j

A k y
y y

  
      

 , 

   2 ij ij
i j i j

A k y k y
y x x y

      
               ,

 

 3 ij
i j

A k y
x x

  
       .

 

We can write the original equation as 

1 0 0A   , 

1 1 2 0 1A A f  
,
 

1 2 2 1 3 0 0A A A f      , 

etc. 

First equation is trivial one where 0  is only 

dependent on x   not y  . 

The second equation reduces to 

   0
1 1 1ij

j j

A k y f y
y x

 
 
 

 . 

Let us introduce auxiliary functions  j y and 

 y  which are Y-periodic, satisfying; 
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1
ijj

i

k
A

y



 


 , 

and 

 1 1A f y  . 

Then the general solution is written as; 

0
1

j

jx

  
  


 . 

The last equation can be integrated over a periodic 
region Y. 

 2 1 3 0 0 0Y Y
A A dy f dy Y f     .

 

This can be explictly written as  

* 0
0ij

i j

k f
x x

 
     

 

with the homogenized conductivity tensor 

  * 1
ˆ ˆi i j j

ij ijY
k k e e dy

Y
      

where ˆie  is unit vector in i  -direction. 

In summary, i  is a Y-periodic solution of  

  ˆ 0i ik e     with boundary condition 

 ˆ ˆ 0i
ie n    . 

This can be rewritten as 

   ˆi ik ke   
.
 

We have to find the weighting functions for each 
direction, x, y, and z. 

The equation for Y-periodic   satisfies; 

  1k f    with periodic boundary condition. 

Above equation has unique solution if and only if 

1 0
Y

f dy  . 

We can obtain the detailed solution as; 

0
0

j

j jx
   

 


.

 

This result is similar to Bensoussan’s original 
derivation except a correction term for local periodic 
source term contribution  .  Above four equations can 

be solved as a same linear matrix equation with 
different source terms. 

 
3. Comparison with Maxwell’s method 

 
Folsom has made a detailed study on the effective 

conductivity problem of realistic TRISO particles using 
the finite element method.[4] We compared the two 
scale asymptotic model using typical PBMR TRISO 
parameters used by Stainsby and Folsom as shown at 
Table 1. 
 

  
Table 1. TRISO parameters 

material radius (cm) 
conductivity 
(W/cm/K) 

kernel 0.0250 0.037 
buffer 0.0345 0.005 
iPyC 0.0385 0.040 
SiC 0.0420 0.160 
oPyC 0.0460 0.040 
matrix PF=0.09344 0.15 
 

Maxwell’s model is written as [2]; 

   
  

3 2 1

3 2 1

m p m p m

e

m m p

k k k k k
k

k k k

 

 

  


  
 . 

where    is the packing fraction and ek  , mk  ,  and 

pk   is the effective, matrix, and particle conductivity, 

respectively.  
It is not easy to find the effective TRISO 

conductivity pk  . Stainsby has determined pk   using 

analytic solution on a spherical symmetric TRISO 
problem as 0.041328 W/m/K[2, App. C]. For given 
packing fraction, Maxwell’s formula gives 0.1370 
W/cm/K. More precise finite element calculation by 
Folsom gives 0.1375 W/cm//K.[4] 

A pebble fuel used in a PBMR is composed of 
randomly distributed TRISO particles. However it can 
be modeled as a periodic body centered cubic (BCC) 
lattice considering that the temperature variation outside 
of TRISO particle is relatively small. 

We have made a BCC model to find the 
homogenized conductivity and local temperature 
variation due to heat generation at kernel region. We 
used a finite element method with cubic elements and 
quadratic Lagrange polynomial (L2) basis to solve the 
spherical TRISO. 

In this case, the conductivity is a scalar and the 
geometry has symmetry in x-, y-, and z-directions, the 
weighting functions are symmetric and the effective 
conductivity is a scalar. 

Cubic lattice calculation has a difficulty in cutting 
spherical boundary. To improve the error due to 
nodalization, we take the average of conductivities for 
different materials in the computational element when 
spherical boundaries intersect. We have compared two 
methods of averaging, one by volume average and the 
other by harmonic average. 

Figure 1 displays the results with varying meshes. 
Figure 1 shows poor convergence of the harmonic 
average method. We have adopted the volume average 
method in succeeding analysis which converges rather 
fast. 
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assembly may be modified to rather simple group-wise 
source problem. 
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