Systematic Approach to Training for System Engineers in Nuclear Power Plants

Jeong-keun Kwak

Korea Hydro & Nuclear Power Co. Human Resources Development Institute, 45014, Haemaji-Ro, Seosaeng-Myun, Ulju-Gun,Ulsan-si ^{*}Corresponding author: bryan.kwak@khnp.co.kr

1. Introduction

Intrinsically, the operation of Nuclear Power Plants (NPPs) includes very complicated and sensitive control of many components such as pumps, compressors, valves, and electrical devices. Therefore, a variety of accident preventive approaches have been adopted since the first commercial NPP operation in Calder Hall, United Kingdom.

Among diverse event preventive ways, training has played an important role for the improvement of NPPs reliability and safety. This is reason why nuclear industry in every country has established and maintained own training institutes and methods.

Since the Three Mile Island (TMI) accident, United States Nuclear Regulatory Commission (USNRC) recommended many betterment plans to US nuclear industry for the elevation of NPPs safety. In the suggested considerations, systematic approach to training, so called SAT appeared in the world.

Basically, SAT is composed of five stages, what is called ADDIE. Hence, through ADDIE process, holistic and trustworthy training could be realized in the actual NPPs operation and maintenance. For this reason, SAT is the representative training methodology in the US nuclear business.

In my paper, comprehensive preparations, tangible applications, and final establishments of training for system engineers are described using practical materials in KHNP.

2. Systematic Approach to Training

In this section, fundamental knowledge about Systematic Approach to Training (SAT) is explained. Especially, SAT is structured as ADDIE. In here, ADDIE stands for Analysis, Design, Develop, Implementation, and Evaluation.

2.1 Origin and Appearance

The year 1979, there was the worst commercial NPP accident happened in TMI Unit#2, the United States. And unlike many experts' expectation, it was proved that NPPs were not safe sufficiently and there were some possibility of NPPs calamity. Actually, after 7 years since TMI catastrophe, the most critical accident

occurred in Chernobyl, the Union of Soviet Socialist Republics (USSR).

TMI accident was the significant momentum to elevate awareness about safety of NPPs. Hence, through deep investigations of TMI case, more than a hundred of alternatives were suggested by the USNRC and SAT was one measure among various proposals [1].

In KHNP, SAT methodology appeared after a NPPs export to United Arab Emirates (UAE) in 2009. In a contract, there was one sentence which described SAT based training. 'Operating services contractor shall ensure that approved (accredited) training programs are developed, established, implemented and maintained using a systematic approach to training (SAT).' This sentence was an initiation of SAT methodology application in the field of employee training in KHNP.

2.2. Fundamental outline of SAT

SAT is a systematic access that supplies a logical process from the analysis of competencies required to perform jobs for analysis, design, development and implementation to accomplish performance and subsequent evaluation of trainings [2]. Basically, SAT is composed of five stages: Analysis, Design, Development, Implementation and Evaluation [3]. Next paragraphs are succinct descriptions of each stage.

- Analysis
- Need Analysis, Job Analysis, and Task Analysis
- Design

Job Performance Measure (JPM), Training Setting, Learning Objectives, Expected Trainee Entry Level Skills and Knowledge, Test Items, and Training Plans

- Development Specification of Learning Activities, Development of Training Materials, Selection of Training Methods, and Development of Lesson Plans
- Implementation Performance of Training Plan, Conduct of Training, Conduct of In-Training Evaluation, and Documentation of Training
- Evaluation Indicator Monitoring, Information Analysis, and Corrective Actions
- Next figure 1 exhibits the schematic diagram of SAT process in NPPs [4].

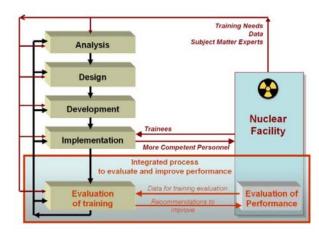


Fig. 1. Diagram of SAT process in NPPs.

3. Analysis for System Engineers

In this chapter, SAT for the training of system engineers in KHNP is displayed. In NPPs, system engineers are in charge of NPP systems whether systems meet plant safety and performance targets. This is accomplished, by tracking, trending, walking down, and monitoring system performance [5]. Hence, system engineers investigate root causes of events, propose the most recommendable alternatives, and improve NPPs accomplishments.

3.1. Roles and Responsibilities of System Engineers

According to EPRI document, roles and responsibilities of system engineers are displayed as below. [6]

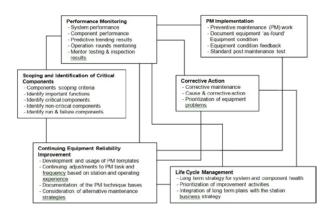


Fig. 2. Involvement of system engineers for NPPs reliability.

Major roles of system engineer are preventive maintenance (PM) monitoring, performance implementation, scoping and identification of critical components, corrective actions, continuing equipment reliability improvement, and life cycle management. Through these activities, system engineers improve the safety of NPPs and performance index such as frequency decrease of unplanned Limiting Conditions for Operation (LCO), untimely completion of PM, and the number of severe events due to human errors [7]. Therefore, system engineers are key personnel to guarantee the reliability of NPPs.

3.2. Task Analysis

Τ

On the basis of Analysis phase, the acquired task analysis results for system engineers are described in Table I.

Task code	Task Name	
SE-T001	Establish and update a System performance Monitoring Plan (SMP).	
SE-T002	Perform system performance monitoring.	
SE-T002	Develop and utilize a System Health	
51 1005	Report (SHR).	
SE-T004	Identify, analyze and improve mid- and	
	long-term performance issues related to	
	Systems/ Structures/ Components	
	(SSCs).	
SE-T005	Keep track of system failures and current	
SE-T006	issues. Perform a System Walk-Down (SWD)	
SE-1000	and prepare a report.	
SE-T007	Develop and update a System NoteBook	
51 1007	(SNB).	
SE-T008	Perform a cause analysis.	
SE-T009	Perform a Common Cause Analysis	
	(CCA) for events.	
SE-T010	Determine functions in the scope of the	
	Maintenance Rule (MR).	
SE-T011	Confirm the safety significance values of	
	the functions in the scope of the	
SE-T012	Maintenance Rule (MR). Verify performance criteria for the	
SE-1012	functions in the scope of the Maintenance	
	Rule (MR).	
SE-T013	Perform performance monitoring for the	
	functions in the scope of the Maintenance	
SE-T014	Rule (MR). Perform focused monitoring and	
SE-1014	management of the functions in the scope	
	of the Maintenance Rule (MR).	
SE-T015	Perform a periodic assessment of the	
	functions in the scope of the Maintenance	
SE-T016	Rule (MR).	
SE-1010	Analyze the Maintenance Rule (MR) functional failures and supervise the	
	follow-up actions.	
SE-T017	Prepare and process a design change	
	proposal.	
SE-T018	Prepare and process a design change	
	package.	
SE-T019	Prepare and process tentative drawings,	
	engineering Documents Change Request	
	(DCR) and Field Change Report (FCR).	

Table I: Task analysis for system engineers in KHNP

SE-T020	Review Preventive Maintenance (PM)	
	items and frequency based on Functional	
	Importance Determination (FID).	
SE-T021	Perform FID on the components of the	
	system.	
SE-T022	Review Preventive Maintenance (PM)	
	task lists.	
SE-T023	Review Single Point Vulnerability (SPV)	
	and update the list of SPV.	
SE-T024	Review for major maintenances test	
	results and engineering documents for	
	engineering technology support.	
SE-T025	Perform technical review of the major	
	work orders and work plan.	
SE-T026	Review issues of system failure.	
SE-T027	Review maintenance results.	
SE-T028	Provide ENgineering TEchnical Report	
	(ENTER) to system operation and	
	maintenance teams.	
SE-T029	Review and implement domestic and	
	overseas Operation Experience (OE).	
SE-T030	Organize and operate a system team.	

At the end of Analysis stage, 30 tasks for system engineer are determined.

3.3. Completion of Job and Task Analysis Document

After the task determination for system engineers, the establishment of Job and Task Analysis (JTA) document is showed in Table II.

No	Items	Description
1	Code	Task number
2	Name	Task name
3	Element	Segmentation of tasks
4	Condition	Recommendations and circumstance
5	Standard	Reference procedures and document
6	Prerequisite	Predominated concept before the implementation
7	Knowledge and skill	Practical information and experiences
8	Learning objective	Final goals of training
9	Training setting	Type and location of training

Table II: List for JTA document for system engineers

The completion of JTA document settlement means the end of Design step.

3.4 Training preparations for system engineers

After completing JTA document, the next step is to secure the effectiveness of training through specified ways for learning activities, application of audiovisual media, useful methods for training progression, and development of learning plans. Next table III shows considered factors for an efficient training for system engineers in Development stage.

No	Item	Description
1	Specification	- Classroom expectations
	of learning	- Evaluation methods and
	activities	safety moment
2	Developmen	- Big picture for overall topic
	t of training	- Introductory video clip
	materials	- Summarization of learning
		objectives
3	Selection of	- Classroom lecture
	training	- Case study and related
	methods	discussion
4	Developmen	- Establishment of 19 lesson
	t of lesson	plans
	plans	

Table III: Considerations for the efficient training

3.5 Training fulfillment and feedback

In the previous Development step, preparations for all training are finalized. Therefore, the next stages are Implementation and Evaluation. Especially, through Implementation phase, training programs are put into real trainings in the classroom, laboratory, OJT even computer based training (CBT).

Unlike other stages, Evaluation is interactive with other steps directly to guarantee of training effectiveness. Next figure \mathbf{IV} is the evaluation feedbacks for system engineer training in KHNP.

Table IV: Feedbacks to each stage from Evaluation

No	Items	Feedbacks
1	Analysis	- Deeper segmentation of
		each task
		- Perspicuity of quantitative
		elements
		- Resetting of Initial
		Training (IT) and
		Continuous Training (CT)
		based on training
		significance
2	Design	- Transition of training
		between classroom and
		OJT
		- Consistency between
		learning objectives and
		referred plant procedures
		- Establishment of
		reasonable test items

3	Development	 Efficient safety moment policy Change of training methods Modification of lesson plans
4	Implementation	 Additional analysis for training performance Summarization of documents storage

4. CONCLUSION

The purpose of this paper is to formulate SAT based training in KHNP, especially for system engineers. Hence, to achieve this goal, over one year study was performed considering voluminous materials and working experiences. Through the process, SAT based training package for system engineers was finished, in the end.

In terms of training in NPPs, SAT methodology is the unwavering trend in South Korea since NPPs export to UAE. Therefore, materialization of SAT based training for system engineers from the origin of SAT to the finalization of SAT should not be overlooked.

REFERENCES

[1] USNRC, NUREG-0737, Clarification of TMI Accident Plan Requirements, Washington D.C, 1980.

[2] IAEA, IAEA-TECDOC-1057, Experience in the Use of Systematic Approach to Training (SAT) for Nuclear Power Plant Personnel, Vienna, 1998.

[3] INPO, ACAD 85-006, Principles of Training System Development, Atlanta, 1993.

[4] IAEA, Overview of IAEA Guidance the Systematic Approach to Training (SAT), Tom Mazour, 2009.

[5] EPRI, TR-107668, Plant Support Engineering: Guideline for System Monitoring by System Engineers, California, 2010.
[6] EPRI, TR-1003479, Equipment Reliability Case Studies: INPO AP-913 Equipment Reliability Process Implementation Summaries, California, 2002.

[7] INPO, ACAD, 98-004, Guidelines for Training and Qualification of Engineering Personnel, Atlanta, 2003.