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1. Introduction 
 

  The improvement of thermal properties of ZrO2 has 

been investigated in many ways to enhance the 

performance of inert matrix fuel (IMF). Inert matrix 

fuel is a useful concept to burn transuranic elements 

(TRU) without increasing extra plutonium [1]. The 

addition of reinforcements with a high thermal 

conductivity has been proposed in the previous 

studies [2-4]. Molybdenum and silicon carbide are 

good candidate materials for the reinforcement 

because of their high thermal conductivities and low 

neutron absorption cross sections. Recently, ZrO2-

based composites reinforced with Mo-wire mesh or 

carbon foam were fabricated by spark plasma 

sintering [5, 6]. When the effects of the structures of 

reinforcements were compared, interconnected 

structures provided more enhanced thermal 

conductivity than discrete structures. The effective 

thermal conductivity of composite materials with 

various reinforcement structures can be calculated by 

using the finite element analyses. Raj et al calculated 

the effective thermal conductivities of ZrO2-based 

composites with various structured Mo 

reinforcements as schematically shown in Fig. 1 [7].   

 
Fig. 1. a) ZrO2 b) ZrO2-Perpendicular Mo Mesh Plane c) 

ZrO2-Parallel Mo Mesh Plane d) ZrO2- Mo Powder 

reinforcement e) ZrO2- Mo 3D Network 

 
  The objective of this study is to compare the results of 

finite element analyses and the analytical models in 

predicting the thermal conductivity of ZrO2 composites 

reinforced with discrete phase Mo particles and 

interconnected Mo structure. 

2. Finite Element Simulation  

  
  In this study, various structures of Mo reinforcements 

have been used as shown in Fig. 2. They are three 

dimensional interconnected Mo wire, particulate discrete 

Mo powder, Mo wire mesh, Mo fiber and Mo sheet. 3D 

model of ZrO2-Mo unit cells has been constructed using 

SolidworksTM and finite element analyses have been 

performed by using ANSYSTM. The effective thermal 

conductivities of the ZrO2-Mo composites can be 

calculated using the thermal conductivity equation: 
 

K =
𝑄 ∗ L

𝐴 ∗ ∆T
       (1) 

 

  Where Q is the heat flux applied, L is the length 

along which heat flows, A is the cross sectional area, 

∆T  is the temperature difference between the two 

surfaces where constant temperature and heat flux 

conditions are applied. 
 
 

   
 

    
 

                          
Fig. 2. Solid models of various structured Mo reinforced 

ZrO2 composites; a) 3D Mo, b) Mo particle, c) Mo mesh, 

d) Mo fiber, e) Mo sheet. 

 

3. Theoretical Models 

The Maxell’s model of composite materials 

predicts the effective thermal conductivity with a 

good accuracy for spherical, non-interacting 

reinforcement particles with a low volume fraction 

(less than 10%) [8].  
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𝐾 = 𝐾𝑚

(2 − 2𝑉𝑟)𝐾𝑚 + (1 + 2𝑉𝑟)𝐾𝑟

(2 + 𝑉𝑟)𝐾𝑚 + (1 − 𝑉𝑟)𝐾𝑟

 

(2) 
Dul’nev et al. proposed a 3D model with a cubic 

unit cell structure to predict the thermal conductivity 

of interconnected reinforcement materials [9]. The 

effective thermal conductivity is expressed by 

equation 3.  

𝐾 = 𝐾𝑟  𝑡2 + 𝐾𝑚(1 − 𝑡)2 +
2𝑡(1 − 𝑡)𝐾𝑟  𝐾𝑚

𝐾𝑚𝑡 + 𝐾𝑟(1 − 𝑡)
 

 

(3) 

𝑡 =      
1

2
+ 𝑐𝑜𝑠 (

1

3
𝑐𝑜𝑠−1(2𝑝 − 1) +

4𝜋

3
)     

 

 

 

  where Kr, Km and K is the thermal conductivity of the 

reinforcement, the matrix and the composite, 

respectively, Vr is the volume fraction of the 

reinforcement, P is the porosity, t is dimensionless 

thickness of the foam skeleton. 

 

  Fig. 3 shows the thermal conductivity of ZrO2-Mo (5 

vol. %) composites at different temperature as predicted 

by FEM method and analytical models (Maxwell and 

Dul’ven) for discrete particles and interconnected phase 

and Fig. 4 shows the effect of  the volume fraction of 

Mo phase. As can be seen from Fig. 3 and Fig. 4, a good 

agreement was found between the analytical models and 

FEM method. 
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Fig. 3. Calculated thermal Conductivities of 5 vol.%Mo 

reinforced ZrO2 composites as function of temperature.
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 Fig. 4. Calculated thermal Conductivities of Mo reinforced 

ZrO2 composites as function of volume fraction. 

 

4.  Conclusions   

   

The finite element analyses presented a good agreement 

with theoretical models in estimating the effects of the 

reinforcement on the thermal conductivities of discrete 

Mo reinforced ZrO2 nanocomposites. It is found that the 

effects of interconnected thermal reinforcements on the 

effective thermal conductivity can be estimated by using 

the percolation model. 
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