New condensation correlation test of TASS/SMR-S code for PRHRS

Hyungjun Kim^{*}, Young-Jong Chung, Hyungrae Kim and Kyoo-Hwan Bae KAERI

- Introduction
- Review on previous condensation correlation
- New condensation correlation of TASS
- Validation of correlation
- Conclusion

Introduction

PRHRS in SMART

- Removes the core decay heat and the sensible heat by a natural circulation in the case of emergency conditions
- TASS/SMR-S code

Analyzes the TH performance of SMART

PRHRS module in TASS code

- Calculate heat removal rate in PRHRS
- Heat transfer in PRHRS
 - Tube/Shell

Review on previous condensation correlation

Nusselt

- Vertical flat plate
- Shah
 - Vertical/horizontal/inclined tube
 - Not recommended to low flow rate

Parameter	Tested range	Recommended range
Flow channel	Pipes, annulus	Pipes, annuli
Flow direction	Horizontal, vertical,	all directions
	15° inclined to horizontal	
Pipe ID, mm	7.4-40	7-40
T _s , °C	21-310	21-310
x, %	0-100	0-100
q, W/m²	158-1893000	All values
G, kg/m ² h	30000-5758400	39000-5758400
p, 10^6 N/m^2	0.07-9.8	0.07-9.8
Pr	0.0019-0.44	0.002-0.44
ReL		
pipes	104-62900	350 and higher
annulus	670-6700	3500 and higher
V, m/s	3-300	3-300
Pr	1-13	>0.5
Flow patterns	All	All

Review on previous condensation correlation

Reference	Condition	Correlation
Kim (2000)	Tube length : 1.8 m Tube ID/OD : 46/50.8 mm Pressure : 0.35-7.2 MPa	$h = \frac{f_D}{(1-\alpha)} \operatorname{Re}_f^{0.8} \operatorname{Pr}_f^{0.4} \frac{k_f}{D}$ $\alpha = (1 + X_u^{0.6})^{-0.15}$ $X_u = \left(\frac{\mu_f}{\mu_g}\right)^{0.25} \left(\frac{1-x}{x}\right)^{0.75} \left(\frac{\rho_g}{\rho_f}\right)$ $f_D = 0.0182 \left[1 - 0.24 \left(1 - 4.47 D^{0.5}\right)\right]^4$
Lee (2007)	Tube length : 2.8 m Tube ID/OD : 13/18 mm Pressure : 0.1-0.13 MPa	$h = h_{Nu} \times 0.8247 \tau_g^{0.3124}$ $\tau_g = \frac{0.5\rho_g u_g^2 f}{g\rho_f L}$
Incropera		$Re_{\delta} = \frac{4g\rho_{f} (\rho_{f} - \rho_{\delta})\delta^{3}}{3\mu_{f}^{2}}, L_{c} = (v_{f}^{2} / g)^{1/3}$ $\frac{hL_{c}}{k_{f}} = \begin{cases} 1.47 Re_{\delta}^{-1/3} \text{ for } Re_{\delta} \le 30 \\ \frac{Re_{\delta}}{1.08 Re_{\delta}^{1/2} - 5.2} \text{ for } 30 \le Re_{\delta} \le 1800 \\ \frac{Re_{\delta}}{8750 + 58 Pr^{-0.5} (Re_{\delta}^{0.75} - 253)} \text{ for } Re_{\delta} \ge 1800 \end{cases}$
TRACE		$Nu_{wl} = \left(Nu_{lam}^{2} + Nu_{larb}^{2}\right)^{1/2}$ $Nu_{lam} = 2\left(1 + 1.83 \times 10^{-4} \text{ Re}_{f}\right)$ $Nu_{nurb} \approx \frac{1}{4} Nu_{Gnielinski}$ $Nu_{Gnielinski} = \frac{(f/2)(\text{Re}-1000)\text{ Pr}}{1 + 12.7(f/2)^{1/2}(\text{Pr}^{2/3}-1)}$
6		$f = \left[1.58 \ln \left(\text{Re}_{f}\right) - 3.28\right]^{-2}$ for 2300 \le Re _f \le 5\times 10 ⁶ , 0.5 \le Pr \le 2000

Heat transfer regime selection logic for pre-CHF and condensation regimes

New correlation of TASS for PRHRS

Prev	vious	Ne	ew
Criterion	Correlation	Criterion	Correlation
α>0.1	Max(Nusselt, Shah)	α>0.9	$h_{Lee} = h_{Nu} \times 0.8247 \tau_g^{0.3124}$ $\tau_g = \frac{0.5\rho_g u_g^2 f}{g\rho_f L}$
		0.8<α<0.9	Interpolation
α<0.1	Interpolation with Dittus-Boelter corr.	α<0.8	Dittus-Boelter corr.

POSTECH Ambient press. test

- Tube length : 3 m
- Tube ID/OD : 13/18 mm

Exp. No	Inlet Temp.(°C)	Inlet steam flow rate
P1	100.07	0.58
P2	100.06	0.76
P3	100.22	1.00
P4	100.09	1.23
P5	100.51	1.43
P6	100.81	1.64

- POSTECH High pressure test
 - > Tube length : 1.5 m
 - Tube ID/OD : 15.8/21.34 mm
 - Pressure : 1.0-6.0 MPa

Press. (MPa) Flow rate	1	2	4	6
Low	Ο	Ο	Ο	Ο
Mid	Ο	Ο	Ο	Ο
High	Ο	Ο	Ο	Ο

POSTECH Ambient Test

POSTECH High Pressure Test

▶ 1 MPa

Distance (m)

Distance (m)

Distance (m)

► 4 MPa

POSTECH High Pressure Test

	TASS	NEW
Avg. Std. Dev. (%)	91.744	64.362
Avg. RMSE (kW/m ² K)	1.835	1.892

Conclusion

- New condensation correlation is suggested for PRHRS module in TASS code and validated with POSTECH condensation experiment.
- New condensation correlation is based on TRACE heat transfer regime selection logic and it gives better results compared to previous one.
 - Over-estimate in low pressure and under-estimate in high pressure
- Further optimization must be followed in case of different pressure and flow rate.