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1. Introduction 

 

The degradation of structural materials caused by 

irradiation damage in nuclear facilities is well known 

phenomenon.[1-4] The normal lattice structure is 

destroyed through the collision between an irradiation 

particle and target atom. Then, it creates defects in the 

matrix depending on the kinetic energy of the recoil 

atom. On the other hand, those primary defects migrate 

over a long period of time so that they develop into a 

large size of defect clusters such as void or dislocation 

loop. Since the damage process happens in the 

miscroscopic and macroscopic scale together, it is 

called as a multiscale phenomenon. 

The Object Kinetic Monte Carlo (OKMC) is a 

calculation method that locates at the middle position of 

these two different time scales.[5] In the damage 

calculation, the primary defects are calculated by a short 

term calculation method such as molecular dynamics 

where the time scale is order of picoseconds. Then, 

OKMC extends its time scale up to days, months or 

years. The results of OKMC such as the average size of 

defect clusters can also be used to estimate the 

macroscopic material property change such as yield 

strength increase based on dislocation theory. 

The calculation procedure of OKMC consists of four 

steps. At the first step, the modeling of the defect is 

introduced such that the complicated configuration is 

replaced by a simple geometric object. In most of cases, 

the shape of object that stands for the strain field formed 

around the defect are simply assumed to be sphere.[5] 

The size of strain field depends on the type of defects. 

The second step is to determine the reaction model 

among objects. Third step is to determine the physical 

properties of the objects. The final step of calculation is 

to apply kinetic Monte Carlo algorithm. 

Unfortunately, it's not easy to obtain the background 

data of the objects for the OKMC calculation in either 

way from experiments or computational methods. The 

first principle calculation is considered as a most 

reliable way of data production for the activation 

energies for the damage process. However, it's known 

that the computational cost of the first principle 

calculation is very expensive in terms of the time and 

resources. 

In the point of efficient data production, the 

sensitivity of data is an important key. Since each of 

defect is simplified as an object in OKMC calculations, 

it inevitably involves so many different kinds of objects 

and related data. Due to high cost of data production, 

it's not efficient way to make an effort to produce all 

data with equal precision. When the data has high 

sensitivity on the final results, the efforts to reduce 

uncertainties in the data ensure the better results. If not, 

it can be a waste of time. 

The easiest way to perform the sensitivity analysis is 

to run each case separately by changing input data, 

which is known by so called direct subtraction method. 

Then, the difference in results caused by uncertainties in 

the input data can be obtained. When the number of data 

is huge, it is not an economic way of test. The 

perturbation technique in Monte Carlo calculation 

provides a more powerful and efficient method for data 

sensitivity analysis.  

The mathematical formulation for Kinetic Monte 

Carlo (KMC) is derived in [6] and it provides the 

perturbation technique algorithm based on the 

differential operator sampling (DOS) method. In this 

paper, a similar formulation work will be given for the 

OKMC. Then, another Monte Carlo perturbation 

technique based on the correlated sampling method 

(CSM) will be derived from the formulation.  

 

2. Derivation of OKMC Perturbation Formulations 

 

2.1 Mathematical Derivation of OKMC Algorithm 

 

The state of the system is defined by the state vector 

whose elements are the positions of each object:  

 

),,,,( ,,,  iii zyx X , (1) 

 

where ix , represents the x coordinate of i-th object 

with type. To perform the sampling of the system state 

in OKMC, the state vector X  as well as time t  are 

regarded as a random variables. Then, it's possible to 

sampling the state of the system X and time t when the 

joint probability density function for X and t  is 

available,  

Fithorn and Weinberg [7] derived the balance equation 

for the joint probability density function for X and t  

which is given by 
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),( tP X  represents the joint probability density function 

for X  and t .  XX k  denotes the probability per 

unit time that the system changes from X  to X . An 

initial condition at 0t  is given by 

 

  .)0,(XX PQ   (5) 

 

Then, the solution of Eq. (2) with the initial condition 

of Eq. (5) can be expressed by 
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Now let us define the joint transition probability density 

function for X  and t given by 
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By introducing the time-flight kernel, T , and the event 

kernel, C , defined by 
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Eq. (7) is rewritten by 
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The solution of Eq. (10) is given by the Neumann series 

solution given as 
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(15) 

Eq. (13) and (14) shows how to sampling X  and 

t successively from the joint transition probability 

density function. 

 

2.2 Correlated sampling method 

 

The expectation value of response function to the 

successive change of states is given by 
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where ),( tr X  is the response at state X and time t that 

must be analyzed during the calculation. From Eq. (13) 

and Eq. (16), it can be shown that the expectation value 

of response function at the j-th transition step can be 

written by 
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and 
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The main concerns in irradiation damage calculation is 

the time evolution of defects so that the number of 

objects and time can be taken as the major responses in 

OKMC. By denoting jN ,  be the number of  type 

objects at the j-th transition step, it can be shown from 

Eq. (13) and Eq. (18) that the expectation value of the 

difference in the number of objects between successive 

states can be expressed by 
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(19) 

 

Note that the number of objects is only function of state 

vector X so that Eq. (19) can be reduced to 
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where  X  denotes the marginal transition probability 

density function only for state vector X which can be 

expressed recursively by 
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In the same way, the expectation value of the difference 

in the elapsed time at the j-th transition step, jt , is 

given by 
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Rief [8] proved that the correlation of sampling is one 

of the possible way to avoid the divergence of relative 

variance of two different Monte Carlo integrations for 

the two different systems with a small perturbation.  

One way of correlating the Monte Carlo integration 

such as Eq. (20) and Eq. (22) can be given by 
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where the asterisk denotes the perturbed system and 
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By introducing the correlated sampling scheme 

described in Eq. (23)-(27), the variation of the 

correlation between object numbers and time due to a 

deviation of input parameter can be examined. 

 

3. Numerical results 

 

The target material is assumed to be pure BCC iron. 

Table 1 shows the reaction model used in the simulation. 

 

Events Reactions 

SIA aggregation mmmm III    

V aggregation mmmm VVV    

Recombination 
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Table 1 Possible object reactions: V stands for vacancy 

and I stands for SIA 

 For simplicity, it’s supposed that the irradiation 

particle is an electron so that the Frenkel pair are 

created whenever a collision occurs in the matrix. The 

number of collision rate is assumed as 2.82e+22 

#/ scm 3 . The size of problem domain is 500*500*500 

Angstroms along each side with periodic boundary 

condition. The temperature is set to 300K. The 

parameter set given in [5] are used for the migration 

energy and attempt frequency of the objects summarized 

in the Table 2.  

 

Object 

type 

Attempt 

frequency 

(/sec) 

Migration energy (eV) 

Ref. Set A Set B 

I1 1.0e+12 0.34 0.34±0.02 0.34 

I2 4.2e+12 0.34 0.34 0.34±0.02 

I3 3.4e+12 0.34 0.34 0.34 

I4 2.9e+12 0.34 0.34 0.34 

I5 2.6e+12 0.34 0.34 0.34 

V1 6.0e+12 0.65 0.65 0.65 

V2 1.0e+09 0.65 0.65 0.65 

V3 1.0e+06 0.65 0.65 0.65 

V4 1.0e+03 0.65 0.65 0.65 

V5 1.0e+00 0.65 0.65 0.65 

others Immobile 

Table 2 Parameter sets for object migration 

 

On the other hand, the data set A and set B given in 

Table 2 can be considered as perturbed cases from the 

reference data set. In the case of data set A, the 

migration energy of single SIA is only changed by ±
0.02eV from the reference case. In the case of data set B, 

the migration energy of di-SIA clusters denoted by I2 is 

only perturbed by the amount of ± 0.02eV. For 

simplicity, the dissociation of the large clusters is not 

considered in the simulation. 

 

 
Figure 1 Time evolution of number of defects with 

reference data set 

 
Fig. 1 shows the time evolution of the number of 

vacancies and SIAs with the reference data set. At the 

initial stage, the number of point defects increase 

linearly with the same numbers. As SIA clusters are 

formed at about 1e-4s, it’s observed that the number of 

single SIA start to decrease. Fig. 2 shows the time 
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evolution of the number of various sizes of SIA clusters. 

It shows the time evolution of SIA clusters happens in 

the order of cluster sizes. It makes sense that the 

increase of number of clusters is only followed after 

increasing the number of smaller size clusters. Since the 

single SIA shows the largest variation in time among all 

objects, it can be considered as a good target of 

sensitivity analysis to the data uncertainties.  

 
Figure 2 Time evolution of number of various size of 

SIA clusters with reference data set 

 

Fig. 3 shows the results obtained with the data set A in 

Table 2. The difference in data set A and reference data 

set lies only in the migration energy of single SIA so 

that it can be considered that the result stands for the 

sensitivity of the time evolution of single SIA number to 

the migration energy of single SIA. Fig. 3 shows that the 

sensitivity of the number of single SIA is very large to 

the migration energy of single SIA. A small variation of 

input data induces a different path of time evolution for 

the single SIA. 

 
Figure 3 Time evolution of single SIA with the 

reference data set and data set A. The real line stands 

for the independent run of OKMC, while the dotted 

lines are results obtained by perturbation calculation 

 
On the other hand, the results denoted by the real line in 

Fig. 3 is obtained by direct running of the case, while 

the dots are the one obtained from the perturbation 

calculation. It shows that two results are in good 

agreements. 

Fig. 4 shows the time evolution of di-SIA clusters for 

the reference data set and set A. It shows the sensitivity 

of di-SIA cluster is lower than single SIA to the 

migration energy of single SIA so that the results are not 

so different for each case. It also shows that the 

perturbation calculation works well even in this case 

where the sensitivity to the data is low. 

  
Figure 4 Time evolution of di-SIA clusters with 

reference data set and set A 

 

Fig. 5 shows the comparison of the time evolution of the 

number of single SIA with the reference data set and 

data set B. It shows the uncertainties in the migration 

energy for di-SIA has no effect on the behavior of single 

SIA, whereas it affects significantly to the behavior of 

di-SIA clusters as shown in Fig. 6. In this case, it also 

reveals that the perturbation calculation works very well 

so that the results are same in the case where the OKMC 

runs directly. 

 

 
Figure 5 Time evolution of single SIA with the 

reference data set and data set B 

 

 
Figure 6 Time evolution of di-SIA clusters with the 

reference data set and data set B 
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4. Conclusion 

 

We have derived an OKMC algorithm 

mathematically and developed an OKMC perturbation 

algorithm newly based on correlated sampling method. 

The developed algorithm has been applied to the test 

problem where the target is pure BCC iron and 

irradiated particle is electron. The results shows that the 

perturbation algorithm works well so that it can be used 

in the prediction of sensitivity. 
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