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1. Introduction 

 

Electromechanical components are commonly used in 

nuclear power plants and other nuclear installations. 

Because they have moving parts, their wear and tear is 

usually more severe than static components. For that 

reason, they require a more stringent inspection and 

maintenance program to prevent failures from occurring. 

However, these programs themselves may induce faults 

on the component such that performing frequent 

inspection services is not always desirable [1]. The 

Condition Based Maintenance (CBM) approach has 

gained recognition for resolving this issue. 

The CBM attempts to perform maintenance only when 

it is required as suggested by the component’s latest 

condition. This method implies the need for additional 

monitoring instrumentation costs. Furthermore, the 

CBM may require sudden, unplanned maintenance 

events and therefore the availability of a maintenance 

team at any time. This may be more costly compared to 

fixed maintenance schedules because it requires the 

maintenance team and equipment to be always available 

at any time.   

This paper proposes an integrated method to optimize 

the CBM by using prognostics methodology to manage 

the operation of an electromechanical component. The 

optimization is expected to prolong the component’s 

service life and minimize CBM costs. 

 

2. Methods 

 

2.1. Model Predictive Controller 

 

The approach we propose to extend the service life of 

an electromechanical component is through the use of a 

dynamic controller which can adjust its output based on 

the component’s degradation state. In this study we 

selected a Model Predictive Controller for this purpose. 

The working principle of an MPC is shown in Fig 1. A 

model of the component is continuously updated as a part 

of an online monitoring program. Degradations in the 

component is then reflected in the change of model 

parameters. Output of the MPC is adjusted based on this 

model information to maintain the desired performance 

of the component. This is done by minimizing a cost 

function as given in equation (1).  

𝐽 = ∑ 𝑠(𝑘) − 𝑚(𝑘)

𝑝

𝑘=1

,        𝐽 ≥ 0         (1) 

Where s(k) is the target setpoint value covering the 

transient response characteristics i.e. rise time, maximum 

overshoot and steady state error, while m(k) is the 

model’s output. We omitted the squared error 

formulation to give leeway for the second optimization 

discussed later in this paper.   

 

 

 
Fig. 1. Working principle of an MPC 

 

 

The MPC has a finite range of control actions. Beyond 

a certain level of degradation, the MPC will not be able 

to exert enough control to maintain the component’s 

performance. This level defines the point of failure as 

illustrated in Fig 2. 

 

 
Fig. 2. Component’s extension of useful life due to MPC  

 

2.2. Fault Growth Modelling and Failure Prediction 

 

The underlying principle for fault growth was adopted 

from the Eyring model which is based in quantum 

mechanics principles [2]. It recalls that environmental 

stresses generate the activation energy needed to cross an 

energy barrier in the quantum level to initiate a reaction 

which creates physical fault such as crack, deformation 

or oxidation. In this research setting, the environmental 

stress v(k) was characterized into deterministic and 

stochastic stresses as follows:  

𝑣(𝑘) = 𝜌(𝑘). 𝜔(𝑘) +  𝜇(𝑘). 𝜔(𝑘)                                (2) 

where 𝜔(𝑘)  is the stochastic environmental condition 

which inflict stresses upon the actuator system while  

𝜌(𝑘) and 𝜇(𝑘) are the deterministic correcting factor to 
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𝜔(𝑘) which determine the extent of the stress exerted on 

the component. 𝜌(𝑘)  increases stress due to a more 

stringent control actions when faults are present. In 

contrast, 𝜇(𝑘) reduces it when the component, or parts of 

the component, is not operating or in standby mode. By 

these definitions, 0 ≤ 𝜇(𝑘)  ≤ 1  and 𝜌(𝑘) ≥ 1  for 

mechanically moving parts, while 𝜌(𝑘) = 0 and 𝜇(𝑘) =
1 . These factors can be measured by comparing 

degradation states between different operating states. 

The difference of these correction factors is shown in Fig 

3.  

 

Fig. 3. Stress level as a function of component’s 

operational state 

 

The stochastic environmental condition 𝜔(𝑘)  is 

further classified into bounded and unbounded load 

variations which probability functions are given in 

equation (3) and equation (4) respectively. The variable 

n in equation (4) is the number of discrete states of ω. 

Bounded ω comes from the variation of environmental 

condition where the component is installed, i.e. 

temperature, pressure, humidity. Unbounded ω 

originates from freely-oscillating stressors with a 

uniform distribution over their normalized discrete states 

n. Several examples of stressors which fall into this 

category are the component’s operation profile, 

demanded load, and electronic disturbances.     

𝑃𝑟(𝜔(𝑘) = 𝜔)
= 𝑃 𝑟(𝜔(𝑘) = 𝜔|𝜔(𝑘 − 1) = 𝑣) , 𝑣𝜖𝑊        (3) 

𝑃𝑟(𝜔(𝑘) = 𝜔) =
1

𝑛
                                            (4)  

The type of environmental variations affecting the 

component depends largely on the component’s design 

itself and installation conditions. For example, internal 

parts such as a motor’s armature may be insulated 

thereby allowing only unbounded stress variations to 

affect fault growths in it. In this study we focus on the 

faults which are irreversible throughout the component’s 

operation and are fixed during the maintenance process. 

The relationship between environmental condition and 

fault growth is illustrated in Fig 4. This kind of faults 

satisfies a monotonically increasing function up to the 

maintenance period as follows: 

∀ t ≤ tmaintenance: faultt+1 ≥ faultt                   (5) 

 

 

 

 

 

Fig 4. Monotonic fault growth 𝛾(𝑘) as a function of 

environment and control loads  
 

From the abovementioned analysis, the fault 

evolution was modelled as a second order Markov Chain 

process as follows [3]: 

𝑝𝑖,𝑗(𝑣) = Pr(𝛾(𝑘 + 1) = 𝑠𝑗|𝛾(𝑘) = 𝑠𝑖 , 𝑣(𝑘) = 𝑣), 

      𝛾, 𝑠𝑖 , 𝑠𝑗 ∈ 𝑆,     𝑣 ∈ 𝑉(𝑘),      𝑘 ∈ ℕ              (6) 

∑ 𝑝𝑖,𝑗

𝑠𝑗∈𝑆

= 1                                                            (7) 

where 

pi,j(v) : probability of transitioning from one DS si to  sj 

given an applied load v 

𝛾 : random variable representing component’s DS 

S : state space for component’s DS 

V(k) : domain of feasible loads that may be applied at a 

given time-instant 

It is expected that there are aleatoric uncertainties in 

the predicted damage level should a load above its 

minimum energy barrier is imposed. This uncertainty is 

incorporated in the model by introducing a noise term 𝜉 

in the Markov Chain model as shown in Fig 5, which is 

a similar practice to the reference studies [4],[5]. In 

contrast, the damage level is expected to remain the same 

when the load is below the minimum energy barrier. 

However in order to accommodate incipient faults and 

epistemic uncertainties in the fault growth physics, an 

arbitrarily small probability value C was additionally 

introduced which may lead to an increase in the 

Degradation State (DS). For this reason, the fault 
evolution mechanism was then mathematically 

expressed as follows: 

𝑝𝑖,𝑗(𝜌)|𝜔 ≥ 𝛽 =  ∑ ∑ 𝑃𝑟(𝜔(𝑘) =𝜉𝜖𝛯𝜔𝜖𝑊

𝜔) . 𝑃𝑟(𝜉(𝑘) = 𝜉) . 𝑃𝑟 (𝛽 = 𝛽𝑡𝑟𝑢𝑒)                           (8)  

𝑝𝑖,𝑗(𝜌)|𝜔 < 𝛽 = 𝐶. 𝑃𝑟 (𝛽 = 𝛽𝑡𝑟𝑢𝑒) ⋍ 𝐶 ≪ 1        (9) 

where 𝑊  and 𝛯  are the state spaces for 𝜔  and 𝜉 

respectively, while 𝛽 is the normalized minimum energy 

barrier zone. 

Since failure is measured in terms of the MPC’s 

capability to maintain the system’s performance, it is 

desirable to map the relation between the internal 

degradation state and the controller’s capability to 

compensate it. This fault compensation capability is 

reflected by the term Adaptive Space (AS). Thus AS has 

a value of 100% when the system is healthy, and 0% 

when the system fails. The objective of this prognostics 

module is therefore to continuously predict when AS’ 

value will reduce to 0. However it was not hypothesized 
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as a straightforward task. The component’s model which 

serve as the basis of MPC may contain inaccuracies from 

model simplification, sensor errors and various noise 

signals. As a consequence, the variable AS as a function 

of DS is expected to be noisy. Furthermore, the variance 

of AS is inversely proportional to the DS due to an 

increasing Signal-to-Noise (SNR) profile. This 

phenomena where DS, a stochastic state satisfying the 

Markov property, generates AS, another stochastic 

variable of observational interest, can be conveniently 

portrayed as a Hidden Markov Model (HMM) shown in 

Fig 5. The DS transition probability pi,j was given in 

equation (20) and equation (21) where ∑ 𝑝𝑖,𝑗𝑠𝑗∈𝑆 = 1 . 

The observed AS probability distribution qk,l was 

determined by experiment where ∑ 𝑞𝑘,𝑙𝜁(𝑙)∈𝑌 = 1. 

 

Fig 5. Hidden Markov Model (HMM) structure 

revealing the monotonic fault progression and its 

relationship with the controller’s adaptiveness  

 

The HMM parameters pi,j and qk,l can be obtained 

through experiments by monitoring the environmental 

conditions and measuring the component’s damage 

growth per failure mode. This experiment should be done 

several times with different component specimens to 

obtain the aleatoric uncertainty profile which is 

determined by the variations in the component’s 

manufacturing process.  

After the HMM’s parameters are identified, the 

HMM model serves as a prior likelihood of fault 

evolution for the component’s type. However due to 

variations in manufacturing process, transportation and 

installation, each component specimen has a slightly 

different fault mode and progression. In order to properly 

predict a component’s fault characteristics, the Bayesian 

inference method is used to form the posterior likelihood 

of DS γ(t) using the HMM as a prior and the calculated 

AS 𝜁(𝑡)  of the specific component. A particle filter 

algorithm is then employed on this likelihood to estimate 

𝑃𝑟 (𝛾(𝑡 + 𝑘)), 𝑃𝑟 (𝜁(𝑡 + 𝑘)) and the 𝑃𝑟 (𝑡|𝜁1).  

The prediction of future AS probabilities 𝑃𝑟 (𝜁(𝑡 +
𝑘)) is shown in Fig 6. A vertical cut of this figure gives 

information on the risk profile of the component given a 

specific mission time. For example, the probability of AS 

≤ 0 at time t3 is as follows: 

𝑃𝑡3
= ∫ 𝑃𝑟(𝜁|𝑡 = 𝑡3)𝑑𝜁

0

−~
= 1 −

∫ 𝑃𝑟(𝜁|𝑡 = 𝑡3)𝑑𝜁
𝐴𝑆𝑚𝑎𝑥

0
                                          (10)   

While the horizontal cut gives an answer on when the 

next maintenance should be done. The probability of 

component’s failure before a postulated maintenance 

schedule t4 is as follows: 

 𝑃𝑟𝑓𝑎𝑖𝑙 = ∫ 𝑃𝑟𝑅𝑈𝐿(𝑡|𝜁 = 0)𝑑𝑡
𝑡4

0
                             (11) 

 

Fig. 6. Probabilistic prediction of  future AS 

 

2.3. Maintenance Optimization 

 

It is recognized that in a system, CBM may co-exist 

with a conventional Planned Scheduled Maintenance 

(PM) program. This is because a PSM program may be 

more suitable for some components over a CBM one. 

The objective of this optimization as shown in Fig 7 is 

then to reduce the system’s downtime in a combined 

maintenance program while at the same time keeping the 

system’s prime performance. By attempting to coincide 

the CBM with PM, the maintenance costs can also be 

reduced. 

 

 
Fig. 7. System unavailability and optimization objective 

 

Having the aforementioned optimization objective, 

its loss function can be written as follows: 

 

𝐽 = 𝑤1𝜁(𝑙)∈𝑌
𝑚𝑖𝑛 ∑ 𝑠(𝑘) − 𝑚(𝑘)

𝑝

𝑘=1

+ 𝑤2𝑃𝑟 (𝑡𝑅𝑈𝐿

= 𝑡𝑃𝑀|𝜁(𝑙)),        𝐽 ≥ 0       (12) 
 

Where w1 and w2 are weighting factors indicating the 

degree of priority of the optimization program.  
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2.4. Application of methodology 

 

The methodology was applied on the anode voltage 

regulator system of an ion implantation accelerator 

which schematic is given in Fig 8. The regulator system 

is composed of a DC motor actuator driven by an H-

bridge chopper driver with a Pulse Width Modulation 

(PWM) switching signal. It controls the operating 

voltage of a motor-generator which generates the anode 

voltage. The regulator fails when it has a slow rise time 

and settling time, high steady state error and overshoot.   

Fig. 8. Schematic of ion implantation accelerator 

 

3. Results 

The optimization process is shown in Fig 9. It shows 

the estimate of future adaptive state predicted at the 

initial and late stage of the system’s degradation. The 

target of the optimization is to maintain system’s 

performance despite of degradation for an additional 514 

operation cycles when a routine maintenance is 

scheduled. 

 
(a) Estimated AS and failure time at the early 

stage of degradation 

 

 

 

 

 

 

 

 

 

 

(b) AS and failure time at the final stage of 

degradation  
Fig. 9. Optimization of controller actions AS 

 
Fig 10 shows the comparison of performance 

between when this optimization methodology is applied 

and when it is not. The comparison is made from when 

degradation was first observed.  Although the steady-

state error of the unoptimized system started to exceed 

its threshold at t+348, the rise time and settling time had 

already deviated earlier at t=1. Therefore in this case the 

unoptimized system failed at t=1. Increasing the 

controller’s action inevitably increased the system’s 

maximum overshoot, however it is still below the 

prescribed threshold of 1%. The figures showed that the 

system’s performance was successfully maintained until 

t=514. 

(a) Comparison of rise time 
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(b) Comparison of settling time 

 

(c) Comparison of steady-state error 

 

 

(d) Comparison of maximum overshoot 

 

Fig. 10. Performance comparison when optimization 

was applied 

 

4. Conclusions 

A fault growth model was presented taking into 

account aleatoric and epistemic uncertainties. This model 

was coupled with an MPC to preserve the degrading 

component’s performance within desired specification. 

The controller’s actions were further optimized to 

coincide the under-performance-time with the planned 

maintenance schedule. This approach may reduce 

maintenance labor’s costs and system unavailability. 

Experiment results confirmed that the proposed 

methodology successfully meet its designated objectives. 
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