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1. Introduction 

 
An implicit numerical method is presented for the 

analysis of two-phase flows in PWRs. Numerical 
stability and efficiency are improved by decoupling 
energy equations from the pressure equation. All the 
convection and diffusion terms are calculated implicitly. 
Thus time step size can be larger than the Courant 
limit. The proposed numerical method is verified 
against conceptual two-phase flow problems. 

 
2. Numerical Method 

 
A two-fluid single pressure model has been adopted 

in this study for the simulation of transient two-phase 
flows where the two fluids are gas and liquid. The 
governing equations are discretized using the finite 
volume method. The computational cells can be 
unstructured allowing application to complicated 
geometries [1]. 

 
2.1 Coupled Method (PME-explicit) 
 

As a first step of the solution scheme, phasic 
momentum equations are calculated explicitly. 
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Then the new time velocity, n 1

k,iu  , is as follows: 
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(2) 
where n 1 n

i i iP ( P P )    is determined to satisfy the mass 
and energy conservation equations. Applying 
divergence operator (  ) to Eq. (2) and integrating the 
equation, we obtain 
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(3) 
where 

k,f  is the k-phase volume flow rate at surface 

f  defined as the product of velocity and surface vector, 
k,f k,f fu S  

 . And 
ijr  is the distance between two 

cell centers. The new time pressure is calculated by 
solving a pressure equation where Eq. (3) is substituted 
into scalar conservation equations to eliminate the new 
time volume flux, n 1

k,f
 . 
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(4) 
An iterative method is used to get a solution from the 
linear equation. After solving Eq. (4), the new time 
phasic velocity and volume flow rate are determined 
from Eqs. (2) and (3). Then the scalar values at new 
time step are calculated. Finally, the remaining 
dependent variables such as temperature, density, and 
other physical properties are updated using the 
equations of state. 
 
2.2 Decoupled Method (PM-explicit) 
 

The same procedures are applied for the prediction 
of velocity vectors as described in section 2.1. However, 
in this method, only mass conservation equation is used 
for setting up the pressure equation. Discretization of 
combined gas and liquid mass equations gives the 
following equation. 
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After linearizing n 1
kT   and k , it can be re-arranged in 

a simple form as follows. 
n 1
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(6) 
Eq. (3) is substituted into Eq. (6) to set up the pressure 
equation. 
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where , 1
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Then the phase fraction is calculated by solving the 
combined mass conservation equation. Finally, non-
condensable gas and phasic energy are calculated. 
 
2.3 Implicit Method (PM-implicit) 

 
The solution scheme described in the above sections 

is a semi-implicit scheme since all the convection and 
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diffusion terms are calculated explicitly where time 
step size is usually limited by the Courant number. A 
numerical scheme is presented in this section for an 
implicit calculation of the governing equations. 

The implicit method for the momentum equation is 
implemented in three steps. The first step accounts for 
the implicit coupling of vapor and liquid velocities. 
This step is called implicit “phase link” is shown by. 
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where (1)
k ,iu  is a phasic velocity at the first step and 

n
k,iSRC  includes all the explicit source terms except 

convection and diffusion terms. As a second step, the 
convection and diffusion terms are calculated implicitly 
for gas- and liquid-phase. 
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In the next, an additional implicit “phase link” step is 
carried out. 
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where (3)
k ,iu  means a velocity at third step. 

The same implicit method for momentum 
conservation equation is applied where the calculations 
are divided into “phase link” and “space link” steps. 
The first step accounts for the implicit coupling of gas 
energy, liquid energy, and non-condensable gas 
fraction. And as the second step, the convection and 
diffusion terms are calculated implicitly for gas energy, 
liquid energy, and non-condensable gas fraction 
respectively 

 
3. Verifications 

 
The numerical schemes are verified against two-

phase flow test problems which includes boiling and 
flashing. Each test problems are simulated using PME-
explicit, PM-explicit, PM-implicit, and PM-implicit-c. 
PM-implicit-c is identical to PM-implicit except the 
time step size. It has been has been increased in PM-
implicit-c beyond Courant limit. 

A two-dimensional boiling flow in a vertical upward 
pipe is simulated where the length and height of the 
pipe are 0.1m and 2.0m. A structured grid with 
250(5x50) uniform computing cells are used. Initially 
the pipe is filled with subcooled liquid of 441.8K at 
1.0MPa. Inlet flow boundary condition is given to the 
bottom of the pipe with a speed of 0.1m/s and 
temperature of 441.8K. Outlet pressure is kept constant 
at 1.0MPa. A uniform volumetric heat source which 
linearly increases up to 23.0MW/m3 in 10 seconds is 
applied to the liquid column to induce bulk boiling. 

Then boiling occurs in the liquid column when the 
liquid temperature reaches the saturation point. The 
calculation is carried out for 20 seconds to get a steady 
state solution. In Fig.1, void fractions averaged on x-
direction are compared along the vertical direction (y-
direction) at 20 second. Subcooled liquid from the 
bottom starts boiling at y=1.62 and increase up to 0.97 
at the exit.  

A two-dimensional flashing flow in a horizontal pipe 
is simulated where the length and height of the pipe are 
2.0m and 0.1m. A structured grid with 250(50x5) 
uniform computing cells are used. Initially the pipe is 
filled with liquid of 450.0K at 1.0MPa which is slightly 
lower than saturation temperature of 453.0K. Inlet flow 
boundary condition is given to the left side of the pipe 
with a speed of 4.0m/s and temperature of 450.0K. 
Outlet pressure boundary condition is given to the right 
side of the pipe which is linearly decreased from 
1.0MPa to 0.864MPa during the first 10 seconds and 
then kept constant. The calculation reached a steady 
state at 15 second. In Fig.2, void fractions averaged on 
y-direction are compared along the horizontal direction 
(x-direction) at 15 second. 

All the four calculations are almost identical to each 
other where Courant number is 1.0 for PME-explicit, 
PM-explicit, PM-implicit and 5.0 for PM-implicit-c. 

 
Figure 1. Steady state void fraction (boiling) 

 
Figure 2. Steady state void fraction (flashing) 

 
4. Conclusions 

 
An implicit numerical method has been proposed for 

two-phase calculation where energy equations are 
decoupled from the pressure equation. Convection and 
diffusion terms are calculated implicitly. The 
calculation results are the same for PME-explicit, PM-
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explicit, and PM-implicit. Large time step size has 
been tested with PM-implicit-c and the results are also 
the same. 
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