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230 has 270 nodes: number of node in r-direction = 5, 
number of node in θ-direction = 6, and number of node 
in z-direction = 9. The volume of 100 has 54 nodes: 
number of node in r-direction = 1, number of node in θ-
direction = 6, and number of node in z-direction = 9.  

A core part is divided into 6 parallel channels: 
inner driver fuel assemblies, outer driver fuel 
assemblies, control rods, neutron sources, blankets, and 
neutron shieldings. The core channels are connected 
with the top of a core barrel. The TC-plug is located in 
the 4th node in r-direction, the 4th node in θ-direction at 
volume of 230. Reactor vessel outlets are modeled as 
three pipes(volume number: 600, 700, and 800). 8 
LFHs and 4 UFHs are modeled as a small pipe, 
respectively. 

Fig. 3 Nodalization for the 3-D analysis with MARS-LMR 
 

Figure 4 shows a flow rate through the flow holes 
and an over-flow rate in steady-state calculations of a 3-
D analysis. In this calculation, the total flow rate 
through the LFHs is 75.3 kg/s, while the total flow rate 
through UFHs is 85.3 kg/s. The over-flow rate over an 
inner barrel is about 1867 kg/s. The total flow rate 
through UFHs is larger than that of the LFHs unlike a 
result of a 1-D calculation due to a dominant radial-
flow instead of an over-flow by a geometrical 
interruption of an axially located fuel handling system 
as shown in figure 1. 

Figure 5 to 14 show a transient result calculated in 
the MONJU RV upper plenum until 3600 sec after a 
turbine trip. A phenomenon of the thermal stratification 
is observed as shown in Figure 5. Sodium under the 5th 
node with UFHs is well mixed and its temperature 
becomes to be almost same. On the other hands, sodium 
over the 5th node shows a thermally stratified condition. 

Fig. 6 shows a flow rate through the flow holes 
and an over-flow rate in the transient calculations. In 
this calculation, the maximum flow rate through the 
LFHs is estimated as 190.39 kg/s at 994 sec, while the 
maximum flow rate through the UFHs is 267.3 kg/s at 
995 sec after a reactor trip. The over-flow decreased to 
5.6 kg/sec until 600 sec, and then increased to about 9 
kg/sec. The sodium keeps overflowing an inner barrel 
during a simulation time of 3600 sec. Consequently, 
sodium over UFHs steadily continues to be cooled by 

the over-flow. Therefore, sodium temperatures 
constantly decrease in the region from the 6th node to 
the 9th node of 230 unlike the stagnations shown in a 
result of the 1-d analysis. 

Figure 7 to 14 show comparisons the calculated 
temperatures in the 3-D analysis with the MONJU SSTs 
data in the RV upper plenum. A calculated result shows 
a good agreement with the MONJU experimental data 
until 3600 sec. The results of the 3-D analysis show a 
better estimation than that of the 1-D analysis. However, 
a calculated temperature at the 9th node near the top of 
an inner barrel is lower than the experimental data like a 
result of the 1-D analysis. It is also considered to be due 
to the modeling of the over-flow region as one 
dimensional volume.  
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Fig. 4 Flow rates of flow holes and overflow in the steady-
state analysis 
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Fig. 5 Temperature stratification under the transient condition 
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Fig. 6 Flow rates of flow holes and overflow in the transient 
analysis 
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Fig. 7 Temperatures at the (4,4,2) node of 230 during the 
transient calculation 
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Fig. 8 Temperatures at the (4,4,3) node of 230 during the 
transient calculation 
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Fig. 9 Temperatures at the (4,4,5) node of 230 during the 
transient calculation 
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Fig. 10 Temperatures at the (4,4,6) node of 230 during the 
transient calculation 
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Fig. 11 Temperatures at the (4,4,7) node of 230 during the 
transient calculation 
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Fig. 12 Temperatures at the (4,4,8) node of 230 during the 
transient calculation 
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Fig. 13 Temperatures at the (4,4,9) node of 230 during the 
transient calculation 
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Fig. 14  RV outlet temperature during the transient calculation 
 

3. Conclusions 
 

Three-dimensional thermal hydraulic analyses are 
implemented in MARS-LMR code to validate the 
thermal-hydraulic models of the MARS-LMR code and 
identify important phenomena such as buoyancy effect 
and thermal stratification. A calculated result shows a 
good agreement with the MONJU experimental data. 
The results of a 3-D analysis show a better estimation 

than that of a 1-D analysis. In the steady-state 
calculation, the total flow rate through UFHs is larger 
than that of the LFHs unlike a result of a 1-D 
calculation due to a dominant radial-flow instead of an 
over-flow by a geometrical interruption of an axially 
located fuel handling system. In the transient 
calculation, the sodium keeps overflowing an inner 
barrel during a simulation time of 3600 sec in the 3-D 
analysis. As a result, sodium over UFHs steadily 
continues to be cooled in the 3-D analysis. However, a 
calculated temperature at the 9th node near the top of an 
inner barrel is lower than an experimental data. It is 
considered to be caused by a modeling of an over-flow 
region as one dimensional volume, because the over-
flow region has a multi-dimensional flow. Therefore, 
the multi-dimensional flow in the over-flow region is a 
point to be considered for further studies.  
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