
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2015

An Applicability Evaluation on Real-time Kernel Prototype
for Nuclear Safety-Grade Controller

Kwang Il Jeong a*, Joon Ku Lee a, Geun Ok Park a, Je Youn Park a, In Soo Koo a, Byeong Seok Yoo b

aI&C/HF Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989Beon-gil, Yuseong-gu, Daejeon
b Next Technology R&D Center, MDS Technology Co., Ltd., 3,4FL. Hancom Tower, 49, Daewangpangyo-ro 644

Beon-gil Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea

1. Introduction

The safety critical system such as reactor protection

system in instrumentation and control (I&C) system of
nuclear power plants shall be designed and operate to
perform the safety function in any circumstances. A
safety-grade controller performing the safety critical
function of nuclear power plants uses a real-time
operating system (RTOS) to run application programs
for monitoring inputs from plants and transferring the
processed outputs or control signals to plants. Generally,
the safety critical systems of the domestic nuclear power
plants have been applied mainly a commercial RTOS as
a commercial grade item (CGI), where a commercial
RTOS does not developed in compliance with nuclear
requirements and qualification assurance. In this paper,
we evaluate the applicability of commercial RTOS in
order to use commercial RTOS on nuclear safety-grade
controller. This paper describes the analyzed demands
of domestic commercial RTOS, the developed real-time
kernel prototype and the evaluation results of
applicability of the developed real-time kernel prototype
through various tests and analysis.

2. Real-time Kernel Prototype Development

We considered the work scope and procedures of

real-time kernel prototype development. The established
work scope and procedures are as followings:

1) Requirement analysis of RTOS in nuclear safety-
grade controller
• Detail analysis of scheduler function in nuclear

safety-grade controller
• Kernel software requirement specification

development based on commercial real-time kernel
2) Commercial real-time kernel transplant to

nuclear safety-grade controller
• Modification of commercial real-time kernel

according to developed kernel software requirement
specification

• Hardware support layer development on
reference target board embedded with a MPC8359
processor

3) Development of Hardware abstraction and I/O
function for nuclear safety-grade controller

• Input/output device driver
• Timer device driver for real-time kernel

4) Real-time kernel prototype function test on
reference target board

• Real-time kernel prototype function test
according to test procedure

• Performance validation tests of real-time
kernel prototype

2.1 Requirement analysis of RTOS in nuclear safety-
grade controller

We analyzed that RTOS shall meet the following

major function requirements and guarantee its function
and performance through an independent verification
and validation(V&V) in accordance with IEEE 7-4.3.2.

- Deterministic performance: The overall

performance of RTOS and real-time application
shall be deterministic. Therefore a real-time
kernel is required to support an application
program to have a deterministic

- Predicable performance: RTOS must have a
deterministic run limit. It must also respond to
external time in a predictable way of which meet
the defined timing requirement.

- Timing Requirement: RTOS must have
predictable response in all load conditions and
under the strict timing requirements possible.

- Scheduler: A scheduler of RTOS has to ensure
that application programs shall complete within
each cycle.

- Interrupt handling: RTOS should provide the
processing time for a high priority interrupt.
Further, the interrupt handling techniques must
be capable of forecast.

- Thread management: Real-time operating
systems should be designed and manage to be
ensure that an operating thread meet a deadline.

2.2 Development environment

The development environment using following

compiler, assembler, linker and debugger is configured
in host PC and used to build the developed source codes
of real-time kernel prototype and run the execution files
of real-time kernel prototype as shown in Fig. 1.

- Compiler: GNU C Compiler Ver. 4.6.4
- Assembly Compiler: GNU Assembly Ver. 2.22
- Linker: GNU ld Ver. 2.22
- Builder: GNU make Ver. 3.81
- Archiver: GNU ar Ver. 2.22

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2015

- JTAG USB emulator: Trace32 debugger

3. Real-time Kernel Prototype Test for evaluation

Unit tests and integration tests on the reference target

board were carried out to evaluate the functions and
performance requirements for the nuclear safety-grade
controller

3.1 Unit test

The functions of real-time kernel prototype for
nuclear safety-grade controller were test whether the
functions were completely implemented with needed
functions in accordance with requirement specification.
And the functions were tested through white box test
whether there were any errors or logically faulty
contexts under implementation. The test environments
are shown in Fig. 2. Unit tests were carried out with
priority given to thread management, scheduler and the
semaphore functions for synchronization and 8 unit test
results out of 80 unit test items are given in Table I.

3.2 Integration Test

The integration tests were performed to verify the
software integration of real-time kernel prototype
through black box tests of the function oriented and
operation test of user APIs. Integration tests were
carried out with priority given to user APIs and 6
integration test results out of 80 integration test items
are given in Table II.

3.3 Performance Validation Test

3.3.1 Timing Analysis

The timing analysis is performed to measure the non-
deterministic performance of hardware and verify
whether the real-time system misses a deadline. We
performed the deterministic performance analysis
through the timing analysis about the following
performance variables in the real-time kernel prototype.

3.3.2 Thread Switching Latency

The thread switching latency shown in Fig. 3 is the
time needed by the operating system to switch the CPU
to store the context information and to run another
thread. To verify the thread switching latency, we
created two threads (Thread A and Thread B) and
measured the switching time from thread A to thread B.

The measurement values of thread switching latency
were measured in at least 74 clocks and up to 95 clocks
as shown in Fig. 4 when the measurement clock was
66.666MHz. That is, it was confirmed that the thread
switching latency was required in at least 1.1us and up
to 1.424us. Therefore it was confirmed that the real-
time kernel prototype can be designed to have
deterministic timing characteristics for its small
variation of thread switching latency.

3.3.3 Interrupt Latency

The interrupt latency shown in Fig. 5 is the time is the
time that elapses from when an interrupt is generated to
when the source of the interrupt is serviced. The
decrementer timer capable of generating the interrupt
every 1 second was used to measure interrupt latency
and we measured the interrupt latency 100,000 times.
The measurement values of interrupt latency were
measured in 14 clocks steadily as shown in Fig. 6 when
the measurement clock was 66.666MHz. That is, it was
confirmed that the interrupt latency was required in at
least 210.0021 ns. Therefore it was confirmed that the
real-time kernel prototype can be designed to have
deterministic timing characteristics for its no variation
of interrupt latency.

4. Conclusions

The real-time kernel prototype was tested the

functions and performance requirements for the nuclear
safety-grade controller through unit tests and integration
tests on the reference target board. It showed the
possibilities that the real-time kernel prototype can be
used as an operating system for a nuclear safety-grade
controller. Also the work is in progress to transplant the
developed real-time kernel prototype to the developing
hardware for nuclear safety-grade controller and it will
be tested its functions and performance. After this
procedure, we will make final conclusion.

ACKNOWLEDGMENT

This work has been supported by the National

Research Foundation of Korea (NRF) granted financial
resource from the Ministry of Science, ICT and Future
Planning (MSIP), and Republic of Korea (No.
2015M2B9A1024473).

REFERENCES

[1] IEEE Std. 7-4.3.2, IEEE Standard Criteria for Digital
Computers in Safety Systems of Nuclear Power Generating
Stations, IEEE, 2010.
[3] KINS/HR-719, Evaluation of Real Time Operating System,
KINS, 2006.
[4] Y.D. Kang, K.T Chong, Safety Evaluation on Real Time
Operating Systems for Safety-Critical Systems, Journal of The
Korea Academia-Industrial cooperation Society, Vol. 11, No.
10 p. 3885-3892, 2010.

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2015

Fig. 1. Real-time kernel prototype development environment

Fig. 2. Test Environment with host and reference target board

Fig. 3. Measurement range of thread switching latency

Fig. 4. Measurement result of thread switching latency

Fig. 5. Measurement range of interrupt latency

Fig. 6. Measurement result of interrupt latency

Table I: Unit Test Items and Results

 Table II: Integration Test Items and Results

Test Item
(8 items out of 80 items)

Expected
Return Result Result

Thread Initiation test in
Interrupt service function

using ThreadInit()

E_ISR_NOT_C
ALLABLE

E_ISR_NOT_
CALLABLE

Periodic thread initiation test
in interrupt service function
using ThreadPeriodicInit()

E_ISR_NOT_C
ALLABLE

E_ISR_NOT_
CALLABLE

Deadline type input error of
ThreadPeriodicInit()

E_INVALID_D
EADLINE

E_INVALID_
DEADLINE

‘0’ deadline time test of
ThreadPeriodicInit()

E__INVALID_
TIME_CAPACI

TY

E__INVALID
_TIME_CAP

ACITY

‘0’ periodic time test of
ThreadPeriodicInit()

E_INVALID_TI
ME_PERIOD

E_INVALID_
TIME_PERI

OD
Period waiting function of
ThreadWaitNextPeriod() in
interrupt service function

E_ISR_NOT_C
ALLABLE

E_ISR_NOT_
CALLABLE

Function call test of
ThreadReplenishDeadline()
in interrupt service function

E_ISR_NOT_C
ALLABLE

E_ISR_NOT_
CALLABLE

Error processing test when
update time of

ThreadReplenishDeadline()
is infinite

E_INVALID_TI
CKS

E_INVALID_
TICKS

Test Item
(6 items out of 25

items)
Expected Result Result

Thread
information

function of real-
time kernel

Thread Information
Providing Functions

shall Provide
Information without

Failure

Provide all Thread
Information

Halt and restart
function of real-

time kernel

Threads shall be halt
and restarted

Threads were halt
and restarted

Automatic thread
stop function of
real- time kernel

Threads shall be
stopped

automatically

Threads were
stopped

automatically
Priority allocation

and return
function of real-

time kernel

Thread priority shall
be allocated and

returned

Thread priority was
allocated and

returned

Scheduler lock
and unlock

function of real-
time kernel

Scheduler shall be
locked and unlocked

Scheduler was
locked and unlocked

Thread deletion
prohibit function

of real- time
kernel

Thread shall not be
deleted when thread

deletion function
was initiated

Thread was not
deleted when thread

deletion function
was initiated

