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1. Introduction

Analysis of neutronic and thermal-fluid is important
to design of prismatic fuel block reactor. CFD analysis
has been successfully implemented to obtain the
parameter of thermal-fluid in prismatic fuel block
reactor. However it requires considerable computational
power to analyze whole prismatic block core. Therefore
steady-state  thermal-fluid analysis code, named
CORONA, has been under development in KAERI [1].

This study aims for obtaining the thermal-fluid
parameters of prismatic fuel block reactor using
CORONA code and analyzing the data based on the

reactor operating condition(BOC, EOC) using the core
pin power obtained from DeCART code [2].

2. CORONA

CORONA code is targeted for steady state thermal
fluid analysis of prismatic core. Major applications of
this code are a steady-state temperature analysis, steady
state analysis for thermal-fluid parameter and a coupled
analysis with the other code such as a neutronics code.

Analysis of whole prismatic fuel block requires
elaborate computational efforts due to complex
geometry. CORONA code adopted the several methods
for reasonable accuracy and reducing processing time.

In order to simulate the heat conduction and fluid
flow within complex geometry of the prismatic fuel
block, the CORONA code uses the three-dimensional
heat conduction equation and one-dimensional network
model.

Many CFD codes require tremendous efforts to
generate computational grids for the CFD analysis. The
CORONA code focuses on the repetitive arrangement
of unit cells in fuel block. The concept of basic unit
cells enables the code to efficient generation of meshes
without a mesh generator.

Whole prismatic core simulation requires a
significant amount of computing power and time. A
block based parallel computation method was
developed for the CORONA code. Each fuel and
reflector block of prismatic core is completely enclosed
by the fluid boundaries. The separated blocks can be
solved independently using a parallel computation.

Fig.1 shows the work flow of neutronic and thermo-
fluid analysis. Neutronic core design and calculation are
implemented using DeCART and CAPP. The DeCART
code calculates the core pin power profile and gives it to
CORONA. CORONA calculates the steady-state
thermal fluid parameters (e.g. max. temperature). These

data are used to evaluate neutronic core design. Also,
these data are used to analysis the core transient
condition and safety analysis by GAMMA+ system
code. The CORONA code calculates fast and accurate
result for steady state condition. It is advantageous to
save the time between nuclear design and transient
accident analysis.
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Fig. 1 Schematic of data flow of neutronic and thermo-

fluid analysis
3. Result and Discussion

The ten test cases (Case(EOC,BOC) - 1, 2, 3, 4, 5)
were simulated in this study to investigate an effect of
the core inlet temperature as shown in Table 1. The
test cases were classified according to core inlet
temperature (Tin: 290 - 490 °C) and total mass flow
rate (m” = 20.07 - 31.22 kg/s). Each test case was
separated by core operating condition (BOC, EQC).

Fig. 2 shows the radial core pin peaking power
profile and core temperature distribution with applied
pin peaking obtained for case 3. (EOC, 7 column). The
core peaking power profile from DeCART shows higher
peaking power at block left side. Also the core
temperature distribution displays a similar trend with
peaking power profile. This result represents that the
core temperature distribution is significantly affected by
the pin power peaking.

Table 1 lists the thermal-fluid boundary conditions
(power, pressure, flow rate, temperature) in each case.
The calculation condition for each case was obtained at
applied thermal power of 58.33 MWy, (=350/6) and
several inlet temperatures (290-490 °C) and flow rates
(20.07-31.22 kg/s) under 7 MPa pressure. The core
outlet temperature is 850°C. It should be noted here that
only 1/6 section of the core was simulated due to
symmetry. Fig. 3 is configuration of reactor core used to
calculation. 1/6 core consist of fuel blocks, reserved
shutdown control (RSC) fuel blocks, control rod block,
and inner/outer reflectors.
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Fig. 4 shows the comparison of maximum fuel
temperature, pressure drop and bypass flow rate in core
between the BOC and EOC condition. Pressure drop
and bypass flow values increased in case 1 to 5 caused
by changed mass flow rate.

In case of BOC, maximum fuel temperature was
higher than EOC due to the higher pin peaking factor.
And slope of change of maximum fuel temperature was
different. It causes that the maximum fuel temperature
reacts more sensitively to changing of inlet temperature
and flow rate.
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Fig. 2. Peaking power and temperature profile within
fuel block (EOC, case-3, 7 column)

Fig. 3. 1/6 core assembly configuration
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4. Conclusion

In this paper, thermal-fluid parameters were analyzed
in reactor operating condition (BOC, EOC) with
CORONA code. The three representative thermal-fluid
data of fuel maximum temperature, pressure drop and
bypass flow rate, were calculated depending on core
inlet temperature and mass flow rate. The pressure drop
and bypass flow rate were increased due to rising of
inlet temperature and mass flow rate. However, the
maximum fuel temperature was decreased between
case-1 to 5 and only the maximum fuel temperature was
reacted sensitively to changing of reactor operating
condition (BOC, EOC). The significant difference of the
BOC and EOC condition came from the pin power
peaking. Therefore, in order to reduce the maximum
fuel temperature, it needs to flatten the pin power
peaking in the core.
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Table 1. Summary of reactor core at BOC and EOC

Parameter Case-1 Case-2 Case-3 Case-4 Case-5
Thermal power [MW] 58.33 58.33 58.33 58.33 58.33
Core inlet Temp. [C] 290 350 390 415 490
Lower plenum pressure [MPa] 7 7 7 7 7

Total mass flow rate [kg/s] 20.07 22.48 24.43 25.84 31.22




