
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2015

Estimation of Remained defects in a Safety-Critical Software

using Bayesian Belief Network of Software Development Life Cycle

Seung Jun Lee and Wondea Jung
Korea Atomic Energy Research Institute

1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, Korea
*Corresponding author: sjlee@kaeri.re.kr

1. Introduction

Extensive research has been performed for decades to
quantify software quality in terms of the probability of
failure on demand (PFD). Although today a number of
methodologies are available, there is no methodology on
the methodology suitable for reliability assessment of
safety critical software of nuclear power plants (NPPs).
Some researchers recognized Bayesian belief network
(BBN) method to be a promising method of quantifying
software reliability [1,2].

Brookhaven National Laboratory (BNL)
comprehensively reviewed various quantitative software
reliability methods to identify the most promising
methods for use in probabilistic safety assessments
(PSAs) of digital systems of NPPs against a set of the
most desirable characteristics developed therein [2,3].
BBNs are recognized as a promising way of quantifying
software reliability and are useful for integrating many
aspects of software engineering and quality assurance.
The method explicitly incorporates important factors
relevant to reliability, such as the quality of the developer,
the development process, problem complexity, testing
effort, and the operation environment [1,4].

In this work, a BBN model was developed to estimate
the number of remained defects in a safety-critical
software based on the quality evaluation of software
development life cycle (SDLC).

2. Safety-Critical Software in NPPs

It is widely recognized that software fails due to

defects (including errors made in user requirements,
defects introduced during development process and
deployment, and erroneous uses of software) residing in
the software and the use of the software triggers these
defects. Software reliability is thus a function of the
manner software is used. Digital protection systems
modeled in a PSA may have multiple failure modes. The
scope of this work is limited to modeling software
failures in performing its protection functions
(represented by PDF) at an NPP. That is, the
defects/faults considered in the model are those that if
triggered would cause a system failure to generate a trip
signal.

Presently, there is no consensus method for modeling
digital systems in NPP PSAs. The possibility exists that
reliability models of digital systems may include
software failures representing different software failure
modes at different levels of detail (e.g., the software may

be modeled at a system, subsystem, or module level).
The software system is a collection of software including
application, operating system, and platform software
implemented in a digital system consisting of multiple
microprocessors. Depending on the method of reliability
modeling used for digital systems in a PSA, and the
associated level of detail, different methods may be
needed to quantify the contribution of software failure to
the digital system’s failure probability or rate. It may
also be necessary to separately model different types of
software (e.g., application-specific software and
operating system software), using different methods.

Many protection systems are designed with identical
redundant channels that run the same software. As such,
it is expected that these channels would fail together due
to common software faults when the same input signals
are encountered. Therefore, it is important to quantify
the software reliability and to reflect in the PSA model.

2. BBN model for estimating the remained defects in

a SW

This work develops a BBN model for estimating the
number of faults remaining in a safety-related software
program after it is installed and checked out at an NPP.

A BBN is a probabilistic graphical model. The model
deals with Bayesian probability, which is a degree of a
person’s belief in the occurrence of any event based on
prior and observed evidence [5]. BBNs have appeared in
the literature under several different names: Bayesian
Nets (BN), Belief Networks, and Causal Probabilistic
Networks. Research on BBNs was initiated in 1970s and
applied to the failure diagnosis of artificial intelligence,
medical, information technology (IT), and machines in
the 1990s. BBNs have been successfully used in non-
nuclear applications.

In a typical application of BBN theory, a BBN model
first is developed for a class of subjects and then subject-
specific evidence is used with the BBN model to draw
subject-specific conclusions. The model assumes that the
quality of the activities of the software development life
cycle, grouped into development and verification and
validation (V&V) activities, directly impact software
reliability; and the impacts of the two groups of activities
can be expressed in terms of the faults that may be
inserted into a software during development activities,

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2015

and those that can be detected and removed by V&V
activities, respectively. The quality in carrying out the
activities is assessed by (1) developing the required
activities (called attributes) of a safety-related system for
each phase of software development, and (2) evaluating
the software under study against these attributes. The
qualities in carrying out different attributes are
aggregated using the BBN model.

In this BBN model, we consider the software
development life cycle consisting of five phases:
requirements, design, implementation, test, and
installation/checkout. For each phase, a BBN model was
developed to estimate the number of faults remaining in
the software at the end of the phase. Figure 1 shows the
basic process to estimate the defects remained in a phase.

4. BBN model development

The BBN model for each phase of the five software

development phases has two nodes that represent,
respectively, the overall quality of software development,
and the V&V. The development team carries out the
development activities, while the V&V team undertakes
an independent V&V of these activities. Each such node
has a few child (attribute) nodes representing the quality
in carrying out the required activities associated with this
attributes. These required activities were identified by
reviewing various guidance and requirement documents.

The main source used to identify these activities is the
IEEE standard on V&V, i.e., IEEE Standard 1012 (the
2004 version of which is endorsed by the Regulatory
Guide 1.168). Many other guidance and standards were
used including IEC 60880, DO-178C, NUREG/CR-6101,

and BTP-14. The activities from these standards are used
to complement those defined in IEEE 1012 and
references to them are provided where they are used. The
latest revisions of the regulations and standards are used
in developing the attributes and associated activities.
Often, the development team carries out the development
activities, while the V&V team performs an independent
V&V of the same activities. In some cases, Informative
information of a standard was used as required activities,
and this is specifically pointed out. The Informative
information is not a requirement, and alternative means
can be used to accomplish the same objective.
Additional standards, including ASME NQA-1 and DOE
G414, were also reviewed but not included as they were
covered by previous standards. As a result of the process
described above, the identified required activities are
more complete than those of individual guidance or
standard.

The node probability tables (NPTs) in the BBN model
were developed through expert opinion elicitations.
Seven experts who have computer science and
experience of NPP software development were chosen to
estimate the NPTs.

5. Conclusion

Even though a number of software reliability
evaluation methods exist, none of them can be applicable
to the safety-critical software in an NPP because
software quality in terms of PDF is required for the PSA.
In fact, there is a report saying an NPP with digitalized
RPS has been experienced only 10 demands for more
than 10 years. Therefore, in this work, a method to

Attributes of phase-
development
activities Development

quality

of defects
inserted per
function
point

of defects
passed from
previous phase

Attributes of phase
V&V activities

V&V quality

Defects detection
probability for
defects introduced
in this phase

of defects
introduced in the
current phase

of defects
introduced in this
phase remaining

×

Size and Complexity
Measure

(# of function point)

To other phases
Defects detection
probability for
defects introduced
in previous phases

of defects
passed from
previous phase
remaining

Total # of defects
remaining in this
phase

+

Figure 1. Basic process to estimate the defects remained in a phase

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2015

estimate the number residual defects in a safety-critical
software of an NPP based on the SDLC quality
evaluation.

REFERENCES

[1] H.S. Eom, G.Y. Park, S.C. Jang, H.S. Son, H.G.
Kang, “V&V-based remaining fault estimation model
for safety-critical software of a nuclear power plant,”
Annals of Nuclear Energy, Vol. 51, pp.38-49, 2013.
[2] Chu, T.L., et al., “Review of Quantitative Software
Reliability Methods,” Brookhaven National Laboratory,
BNL-94047-2010, September 2010.
[3] Chu, T.L., et al., “Development of Quantitative
Software Reliability Models for Digital Protection
Systems of Nuclear Power Plants,” U.S. Nuclear
Regulatory Commission, NUREG/CR-7044, BNL-
NUREG-99068-2013, October 2013.
[4] Fenton N. E. and Neil, M., Risk Assessment and
Decision Analysis with Bayesian Network, CRC Press,
New York 2012.
[5] Heckerman, D., “A tutorial on learning with
Bayesian networks,” Technical Report MSR-TR-95-06,
Microsoft Research, Microsoft Corporation, 1995.

