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1. Introduction 

 
In the Fukushima accident, the hydrogen explosion 

occurred because of the generated hydrogen by the 

reaction of the zirconium alloy and water vapor when 

the temperature of the nuclear fuel increased due to the 

loss of coolant. The hydrogen explosion may occur 

when the hydrogen concentration increases above 4%. 

Therefore, the hydrogen concentration must be kept 

below 4% to maintain containment integrity and prevent 

explosion. In order to predict the hydrogen 

concentration, this paper suggests the CFNN model. 

The CFNN model presents the prediction value of the 

hydrogen concentration through a repeatedly performed 

analysis using serially connected FNN modules. The 

CFNN model is a data-based method that requires the 

data for its development and verification. Because real 

severe accident data cannot be obtained from actual the 

nuclear power plant accidents, the data were obtained 

by numerically simulating severe accident scenarios of 

the optimized power reactor (OPR1000) using MAAP4 

code [1]. 

 

2. Prediction of the hydrogen concentration using 

the CFNN model 

 

2.1 CFNN model 

 

The CFNN model is based on syllogistic fuzzy 

reasoning. It contains more than two reasoning stages in 

which each stage corresponds to the single-stage FNN 

module. But, single-stage fuzzy reasoning is the 

simplest among the various types of reasoning 

mechanisms of a human being. The basic form of 

syllogistic fuzzy reasoning contains two reasoning 

stages, and it can be generally extended to case with 

more than two stages. Syllogistic fuzzy reasoning, 

where the consequence of a rule in one reasoning stage 

is passed to the next stage as a fact, is essential to 

effectively build up a large-scale system with high-level 

intelligence [2]. The arbitrary 
thi  rule at each stage of 

the CFNN model can be described as follows: 
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The CFNN model predicts the target value through 

the process of repeatedly adding FNN modules. The 

first stage FNN module of the CFNN model is shown in 

Fig. 1. 
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Fig. 1. First stage FNN module. 

 

In Fig. 1, the first layer indicates the input nodes that 

transmit the input values to the next layer. Each output 

from the first layer is transmitted to the input of the 

membership function. The second layer indicates 

fuzzification layer that calculates the membership 

function values using the Gaussian function of Eq. (2). 

The third layer indicates a product operator on the 

membership function values that is expressed as Eq. (3). 

The fourth layer indicates normalization using Eq. (4). 

The fifth layer generates the output of each fuzzy if-then 

rule. Finally, the sixth layer indicates an aggregation of 

all the fuzzy if-then rules and is expressed as Eq. (5). 

The second-stage FNN module uses the initial input 



Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 29-30, 2015 

 

 
variables and the output of the first-stage FNN module 

as the input variables. 

 
2

2

( ( ) )

2
( ( ))

j ij

ij

x k c

ij jx k e







  (2) 

 

1

( ) ( ( ))
m

i
ij j

j

w k x k


  (3) 

 

1

( ( ))
( )

( ( ))

i
i

n
i

i

w k
w k

w k







x

x

 (4) 

 

1 1

ˆ( ) ( ) ( ) ( ) ( ( ))

n n
i i i i

i i

y k w k y k w k f k

 

   x  (5) 

where ( )
j

x k  is the input value of the fuzzy inference 

system.
ij

c  is the center position of the peak. 
ij

  is the 

width of the bell shape. 

 

Therefore, this process is repeated G  times to find 

the optimum output value if the number of G  FNN 

modules are serially connected. A general drawing of 

the CFNN model is shown in Fig. 2 [3]. 
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Fig. 2. CFNN model. 

 

2.2 Application to accident simulation data  

 

The CFNN model is optimized by a combined 

method using the specified training data. The antecedent 

parameters in the membership function are optimized by 

a genetic algorithm. The consequent parameters are 

optimized by the least square method. In the genetic 

algorithm, the following fitness function is proposed to 

minimize the maximum and root-mean-square (RMS) 

errors: 

 

1 1 2 2exp( )F E E     (6) 
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To predict the hydrogen concentration in a 

containment, the input data of the CFNN model are the 

elapsed time after reactor shutdown, the predicted 

LOCA break size, and the containment pressure. 

The LOCA break position was set to hot-leg, cold-leg, 

and steam generator tube. And the LOCA break size 

was set to the small and large sizes. The break size 

ranges from 1/10000 to half of a double-ended 

guillotine break (DEGB) for hot-leg and cold-leg 

LOCAs, and the break sizes range from 1 to 200 tube 

ruptures for the steam generator tube ruptures (SGTR) 

accidents. 

The simulation comprised 600 cases of severe 

accident scenarios. The data consisted of 200 hot-leg 

LOCAs, 200 cold-leg LOCAs, and 200 SGTRs. The 

break sizes of hot-leg and cold-leg LOCA were divided 

into one group of 30 small break sizes and another 

group of 170 large break sizes. The break sizes of 

SGTR were divided into one group of 100 small break 

sizes and another group of 100 large break sizes. 

 

2.3 Results 

 

Table I lists the performance results of the CFNN 

model. In Table I, even if the RMS error differs 

according to the LOCA break positions and sizes, the 

RMS error level is below 3%. Figs. 3 shows the RMS 

errors predicted by the CFNN model for the 

development and test data of cold-leg LOCAs. The 

RMS error gradually decreases as the number of stages 

in the CFNN model is increased by the repetitive 

process.  
 

Table I: Performance results using the CFNN model 

 

(a) Hot-leg LOCA 

 

Number 

of fuzzy 

rules 

Small LOCA Large LOCA 

RMS 

error (%) 

(devel. 

data) 

RMS 

error (%) 

(test data) 

RMS 

error (%) 

(devel. 

data) 

RMS 

error (%) 

(test data) 

2 2.2218 1.9710 0.3525 0.3885 

3 2.4115 1.9894 0.3034 0.2855 

5 2.6775 2.1005 0.2740 0.2574 

7 1.9739 1.7086 0.2423 0.2493 

 

(b) Cold-leg LOCA 

 

Number 

of fuzzy 

rules 

Small LOCA Large LOCA 

RMS 

error (%) 

(devel. 

data) 

RMS 

error (%) 

(test data) 

RMS 

error (%) 

(devel. 

data) 

RMS 

error (%) 

(test data) 

2 1.3424 2.0261 1.0026 0.9920 

3 1.7925 2.0513 1.0467 1.1099 

5 2.3294 3.0116 0.9301 1.0362 

7 1.4258 2.7206 1.4805 1.6005 
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(c) SGTR 

 

Number 

of fuzzy 

rules 

Small LOCA Large LOCA 

RMS 

error (%) 

(devel. 

data) 

RMS 

error (%) 

(test data) 

RMS 

error (%) 

(devel. 

data) 

RMS 

error (%) 

(test data) 

2 6.3228 5.3364 3.8807 2.7769 

3 5.3391 6.252 3.0645 2.7777 

5 5.6308 7.3272 3.3010 3.1562 

7 5.4033 6.1768 3.1034 2.7741 
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(a) cold-leg-small LOCA (development data) 
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(b) cold-leg-large LOCA (development data) 
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(c) cold-leg-small LOCA (test data) 
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(d) cold-leg-large LOCA (test data) 

 

Fig. 3. RMS error versus stage number of CFNN (cold-leg 

LOCA) 

 

3. Conclusions 

 

When the hydrogen concentration in a containment 

increases above 4% in atmosphere, the hydrogen 

explosion will likely occur. Therefore, the hydrogen 

concentration has to be kept below 4% to maintain 

containment integrity and prevent explosion. This paper 

presents the prediction of the hydrogen concentration in 

containment under the severe accidents using the CFNN 

model. The input data of the CFNN model are the 

elapsed time after reactor shutdown, predicted LOCA 

break size, and containment pressure. In addition, the 

simulation data are obtained using MAAP4 code for the 

OPR1000 reactor. The performance results of the 

CFNN model show that the RMS error decreases as the 

stage number of the CFNN model increases. In addition, 

the RMS error level is below 3%. Therefore, we believe 

that the CFNN model can accurately predict the 

hydrogen concentration in the containment under the 

severe accidents. 
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