Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

NATIONAL Sanhae Choi^{a*}, Jae Young Yoon^a, Il Soon Hwang^a UNIVERSITY ^aDepartment of Energy Systems Engineering, Seoul National University *Corresponding author : jrsanhae@snu.ac.kr

. Introduction

SEOUL

The fatigue crack growth rate is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI

 \rightarrow Deterministic model include uncertainties in the constant of the model

▷ Crack length was measured by direct current potential drop (DCPD) method using voltmeter and optical method using travelling microscope

 \triangleright The relation for crack length and voltage is followed by Johnson's equation [4]

Where U is the potential drop (V),

▷ Likelihood function [5] - Assuming $x_i - \dot{a}$ normal distribution is $N(0, \sigma^2)$ $L(C,m \mid \dot{a}) = \prod^{N} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{\sigma}}$ Where σ is the standard deviation of $x_i - \dot{a}$ ▷ Prior and posterior C and m distributions

- Random sampled using Monte Carlo simulation Prior
Posterior (b)(a)

Uncertainty problems can be overcome by \triangleright probabilistic methods that estimate the degradation of materials even if the additional data scarcity of the fatigue model

The unknown constants of Paris' law were updated probabilistically by Bayesian inference \triangleright This methods can be used for the probabilistic structural integrity assessment of nuclear materials in the lab scale

2. Methods and Results

2.1 Materials

▷ Polished Type 304 stainless steel was used

Table I. Chemical composition of Type 304 stainless steel

Chemical composition (%)	С	Si	Mn	Р	S	Ni	Cr	Мо	N	Cu	Fe	
Type 304 stainless steel	0.044	0.47	1.15	0.038	0.002	8.00	18.14	0.22	0.023	0.34	Bal.	(

Table II. Mechanical properties of Type 304 stainless steel (STS 304) measured at 25 $^{\circ}$ C in air condition in accordance

a is the crack length (mm), a_0 is the reference crack length (mm), y is the length between notch centerline and the voltage measurement point shown in Fig. 1

 \triangleright Constant load and constant ΔK test conditions

Table III. Fatigue test conditions (left) and pre-cracking conditions (right)

Fatigue Test No.	1	2	
Mode	Const. load	Const. ΔK	
$\Delta \mathbf{P}(\mathbf{kN})$	18	-	
$\Delta \mathbf{K} \left(MPa\sqrt{m} \right)$	-	30	
R ratio (σ_min/σ_max)	0.1		
Frequency (Hz)	5		
Environment	Air		
Temperature (°C)	25		

2.3 Fatigue Test Results

Const
load
18
0.1
10
Air
25
1

Fatigue Crack Growth Rate updated by Bayesian Inference Stainless Steel 304 Environment : Air Temperature : 25°C R (omin/omax) : 0.1 Frequency : 10 Hz (mm/cy 1E-4 da/dN da/dN by Constant Load da/dN by Constant delta K prior Paris' Law fitting posterior Paris' Law (updated by C) posterior Paris' Law (updated by m) dK (MPa*m^0.5) Fig 7. Updated Paris' law results using Bayesian inference Table IV. Paris' law constant results of Type 304 stainless steel Sampled Posterior

Fig 6. Prior and posterior constant (a) C and (b) m distribution

with ASTM E8/E8M-15a (Straining rate=0.75mm/min)

Materials	STS 304
0.2 % offset yield strength (MPa)	264.4
Ultimate tensile strength (MPa)	757.2
Elastic modulus (GPa)	178.9
Elongation (%)	66.93

2.2 Fatigue Test Procedure

- > The test was controlled by a servo-hydraulic testing control machine named Instron[®] Model 8516 with a load capacity of 100kN
- > SEN (Single Edge Notch) specimens were made by electrical-discharge machining (EDM) wire cutting
- \triangleright The specimens were made in accordance with ASTM E647-13ae1, Gary S. Was et al., a dissertation from Il Soon Hwang, and a thesis from Jae Young Yoon [1-3]

Fig 2. Fatigue test picture (a) left side view (b) right side v

Fig 4. Picture of (a) notch

	Par cor	Prior	
	C	Mean	1.5625×10^{-10}
	C	STD	5.8317 \times 10 ⁻¹²
	Par	Prior	
eei	COI	nstant	

Paris' law constant		Prior	Sampled prior	Posterior	
100	Mean	3.9388	3.9388	3.8834	
m	STD	9.9560×10^{-2}	9.9562×10^{-2}	1.1213×10^{-4}	

prior

 1.5626×10^{-10}

5.8337 × 10^{-11} | 2.1761 × 10^{-23}

 1.2923×10^{-10}

3. Conclusions

▷ Paris' law constants C and m for Type 304 stainless steel were determined by probabilistic method using Bayesian inference

 \rightarrow <u>Uncertainty of models' constant decreases dramatically</u>

▷ Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity.

▷ Bayesian approach can utilize in-service data derived from aged properties

 \rightarrow A probabilistic method should be applied to consider the environment and material conditions

Reference

Fig 1. SEN specimens for fatigue testing and wire attachment positions on specimens (unit : mm)

> Stress intensity factor of fatigue specimens $K = \frac{P\sqrt{a}}{BW} \left| 1.986 + 1.782 \left(\frac{a}{W}\right) + 6.998 \left(\frac{a}{W}\right)^2 - 21.505 \left(\frac{a}{W}\right)^3 + 45.351 \left(\frac{a}{W}\right)^4 \right|$

until $\frac{u}{W} = 0.621$ (it shows a maximum difference of 6%)

Where K is the stress intensity factor ($MPa\sqrt{m}$), P is the applied load (N), a is the crack length (mm), B is the thickness of specimens (mm), and W is the width of specimens (mm)

by DCPD VS by microscope (b) crack with microscope

DCPD methods measured crack length very well [1] G. S. Was and R. G. Ballinger, "Hydrogen Induced Cracking

2.4 Bayesian Updating

▷ Bayesian theorem [5] f(C,m): Prior distribution of constant C and m $f(C, m \mid \dot{a})$: Posterior distribution of constant C and m $f(C, m | \dot{a}) = kL(C, m | \dot{a})f(C, m)$ $L(C, m | \dot{a})$: Likelihood k: Normalizing constant ▷ Normal distribution [6]

- Probability density function (PDF) $(C, m-\mu_{C,r})$ $f(C,m) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{\sigma\sqrt{2\pi}}}}e^{-\frac{1}{\sigma\sqrt{2\pi}}}e^{-\frac{1}{\sigma\sqrt{2\pi}}$ $2\sigma_{C,m}^{2}$ Where μ is the mean of C and m,

 σ is the standard deviation of C and m

DCPD a (mm)

Fig 5. Crack length measured

- Cumulative distribution function (CDF)

 $F(C,m) = \Phi\left(\frac{C,m-\mu_{C,m}}{\sigma_{C,m}}\right) = \frac{1}{2}\left|1 + \operatorname{erf}\left(\frac{C,m-\mu_{C,m}}{\sigma_{C,m}\sqrt{2}}\right)\right|$ Where $\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right], \operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$

under Cyclic Loading of Nickel Base Alloys Used for PWR Steam Generator Tubing," Fourth Semi-annual Progress Report, EPRI *NP-4613, EPRI, Palo Alto, CA,* 1980.

[2] I. S. Hwang, "Embrittlement Mechanisms of Nickel-base Alloys in Water," Dissertation, Department of Nuclear Engineering, Massachusetts Institute of Technology, Boston, 1987.

[3] J. Y. Yoon, "Modeling of the Corrosion Fatigue Crack Growth Rate for Ni-base Alloy X-750," Thesis, Seoul National University, Seoul, 2012.

[4] K.-H. Schwalbe and D. Hellmann, "Application of the Electrical Potential Method to Crack Length Measurements Using Johnson's Formula," GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, FR), 1981. [5] K. M. Ramachandran and C. P. Tsokos, *Mathematical* Statistics with Applications, Academic Press, 2009. [6] B. M. Ayyub and R. H. McCuen, *Probability, statistics, and* reliability for engineers and scientists, 3rd ed., CRC Press, 2011.