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1. Introduction 
 

In South Korea, as an improved safety design concept, 
Passive Auxiliary Feedwater System (PAFS) has been 
developed to be adopted in Advanced Power Reactor 
Plus (APR+). Since PAFS is two-phase flow system, 
flow instabilities may occur. Flow instabilities may 
cause the severe deterioration of heat removal capability 
of PAFS due to the reduction of the condensate flow. 
For the reliable operation of PAFS, it is required to 
assess the flow instabilities in PAFS. 

The Ledinegg-type instability and the Density Wave 
Oscillation (DWO) are the representative static flow 
instability and the dynamic flow instability, respectively. 
In this study, the occurrence possibility of both 
instabilities in PAFS is assessed with the best-estimate 
thermal hydraulic code, RELAP5. 

 
2. Assessment Method 

 
In order to assess the flow instability, this study used 

the APR+ PAFS input model. For various operation 
conditions, in order to generate the steady-state PAFS 
flow rate, this study simplified the APR+ PAFS input 
model as shown in Fig. 1. By controlling the heat source 
in the Steam Generator (SG) and the heat sink in PAFS, 
the heat balance was accomplished and various PAFS 
flow rates were obtained. 

 

 

Fig. 1. RELAP5 nodalization for simplified APR+ PAFS 
 
Figures 2 to 5 show the calculation results for the 

case that PAFS flow rate is 51 kg/s and the operation 
pressure is 60 bar as a sample case. After 1000 s, the 
steady state was accomplished well in terms the SG 
pressure, PAFS flow rate, heat transfer rate and return 
line water level. 

In the same way, the steady-state PAFS flow rates 
were obtained for various operation conditions as shown 
in Fig. 6. The PAFS flow rate increases with the PAFS 
heat removal rate. 

0 500 1000 1500 2000
50

55

60

65

70

50

55

60

65

70

Pr
es

su
re

 [b
ar

]

Time [s]

 SG Dome
 PAFS Inlet
 PAFS Outlet Steady-State

 

Fig. 2. SG pressure 
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Fig. 3. PAFS flow rate 
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Fig. 4. Heat transfer capacity of SG and PAFS 
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Fig. 5. RELAP5 return line water level 
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Fig. 6. PAFS flow rate for all SG pressure 
 

3. Possibility of Ledinegg Instability 
 

Figure 7 shows the pressure drop curve for various 
PAFS operation pressure. The pressure drop increases 
with PAFS flow rate. The negative slope section does 
not appear. Therefore, it is concluded that the Ledinegg 
flow instability does not occur in PAFS. 
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Fig. 7. Pressure drop curve 
 

4. Possibility of Density Wave Oscillation 
 

Figure 8 shows the PAFS flow rate for the case that 
PAFS flow rate is 7.6 kg/s and the operation pressure is 
20 bar as a sample case. 
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Fig. 8. RELAP5 nodalization 
 

Figure 9 shows the pressure drop curve for various 
PAFS operation pressure. Conditions that the DWO 
occurs are marked as red circle. When the PAFS flow 
rate is less than ~30 kg/s, the DWO might occur in 
PAFS. However, the amplitudes of the flow rate and the 
capacity were not large.  
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Fig. 9. RELAP5 nodalization 
 

3. Conclusions 
 

From the RELAP5 code analysis, the Ledinegg 
instability might not occur in PAFS. The DWO might 
occur in PAFS but the effect of the oscillation on the 
heat removal capacity of PAFS was not large. Therefore, 
it is concluded that PAFS is safe in terms of flow 
instabilities. 
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