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1. Introduction 

 
There are only very few emission free sources with 

minimal footprint on this planet – nuclear is one of 
them, however, despite of rapidly increased funding in 
last couple of years, total amount of electricity that can 
be generated with reliable confirmation from all of 
renewable sources except nuclear is very limited [1]. 
Nuclear energy, being the most appealing and 
nonpolluting source has a big issue left i.e. managing 
the spent nuclear fuel. There are many technological 
ideas in the design phase or under construction to come 
up with this limitation. Among the many strategies to 
incinerate transuranic isotopes (TRU), fission products 
(FP), and also produce electricity different types of 
critical and subcritical reactors are proposed. Two most 
widely studied subcritical reactor options being 
Accelerator Driven System and a Fusion Fission Hybrid 
System [2-5]. 

In this study, we compare the amount of TRU burnt 
in different system spectra. To compare the 
performance, an identical model of a subcritical reactor 
is used for all the cases, with driving source taken from 
the potential candidates. A typical fast reactor spectrum 
is taken as a reference case. It is then compared with an 
accelerator driven subcritical reactor (ADSR) and a 
fusion spectrum i.e. 14.1 MeV mono-energetic neutrons. 
Both later types of driving sources are under extensive 
investigation but possess totally different pros and cons. 
Expected price tags for the latter two options are also 
very different from one another. We take net amount of 
TRU burnt as the criterion to judge these systems for 
their performance and worth. 

 
2. Reactor Model 

 
As shown in Fig. 1 below, an ideal model reactor is 

used in all the cases. External source neutrons 
(symbolically shown as white arrows entering the TRU 
region) are sampled from the external sources. The 
choice of Plutonium content in the TRU core region, 
marked as red, depends on many factors. If purpose of 
the reactor is to burn Pu then Artioli et al. [6] suggested 
using Pu/TRU ratio of less than 1.2. For both 
accelerator and fusion driven systems, however, it is 
strongly desired to keep the effective multiplication 
factor constant. A changing (usually decreasing) 
multiplication factor means a monotonically increasing 
requirement of accelerator/fusion neutrons which itself 
is not proven yet. So, from the external source point of 

view they suggest Pu enrichment as close to 42% as 
possible. Resultantly there is negligible variation in the 
keff over entire cycle length and external source can be 
designed for running at a constant current. Such a “non-
natural” Pu content needs extraction of Pu from the 
spent nuclear fuel which is not an option for many 
countries. 

 

 

Fig.  1. Ideal reactor model 

 
To make analysis more open and useful, TRU 

content resulting from nongaseous isotopes of a typical 
1000 MW PWR after ten years of cooling time is used. 
No isotope or element is extracted or doped. TRU fuel 
constitutes only 6 % by volume of this region, coolant, 
cladding, grid spacers etc. [7] make up the other 94 %. 
The inner and outer HT-9 regions represent reflector 
and water holder respectively. H2O region is pure light 
water used as a representative shield material. Detailed 
isotopic composition of the TRU and HT-9 regions is 
given in table 1. 

Fig. 1 also shows the dimensions of the different 
regions used. TRU region is sized with only purpose of 
making initial keff close to unity (about 0.96). External 
source region size is selected from the usual 
requirement for a typical ADSR i.e. 10 cm thick walled 
imaginary cylinder. Reflector size (10 cm) is chosen to 
bridge the gap between a bare reactor effective 
multiplication factor ( ����

���� ) and effective 

multiplication factor with an infinite reflector (����
��������

) 

by roughly 80%. Water and water holder sizes are not 
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Fig.  4. Pu-239 burnt in one cycle length (EFPD = 500 days) 

Fig. 5 gives the actual benefit of using a certain 
source spectrum. This is the ultimate target of any TRU 
burner. It is obvious that Fusion source having the 
highest average neutron energy burns the largest 
amount of TRU (except Pu-239). Due to softest 
spectrum, fast reactor is least effective among three. 
The difference of 289 g (roughly 0.3%) between Fusion 
and fast reactor driven systems is very small. It is worth 
noting that the difference in the masses burnt from 
ADSR and Fusion driven systems is negligible (160 g 
i.e. 0.087 % of the initial loaded TRU). 

 

 

Fig.  5. TRU isotopes other than Pu-239 burnt in a full single 
cycle length i.e. 500 EFPD 

In every reactor, due to higher absorption cross 
section for most of the TRU isotopes than fission cross 
sections and also because of the presence of relatively 
lower energy neutrons in the core, many isotopes are 
produced by transmutation. Fig. 6 lists those isotopes 
for which net amount at the end of the 500 day cycle is 
higher than their initially loaded amount. As expected, 
fast reactor spectrum being the softest among three 
produces highest amount of TRU and ADSR driven 
system (just opposite of Fig. 5) produces the least, 
though difference between TRU isotopes produced with 
ADSR and fusion driven system is very small (160.3 g). 

 

 

Fig.  6. Total amount of the TRU isotopes produced in a full 
cycle length i.e. 500 EFPD 

Table II. Change in the TRU isotope inventory 

Sr. 
No. 

Isotope 

Mass produced or burnt (g) 
 

External Source 

Fast 

Fusion ADSR Reactor 

1 92234 -58 -56.5 -57 

2 93236 -0.47 -3.8 -1.1 

3 93237 2034 1949 1926 

4 94238 -784 -576 -574 

5 94239 18210 17770 17650 

6 94240 1590 1980 1990 

7 94241 3400 3380 3370 

8 94242 380 480 470 

9 95241 1380 1281 1251 

10 95242 -101 -93 -92 

11 95243 290 293 286 

12 96242 -526 -490 -470 

13 96244 -350 -277 -273 

14 96245 -52.5 -45 -44.5 

Total 25412 25591 25432 

 
If we juxtapose the amounts of all the TRU isotopes 

produced or burnt and try to ascertain the effectiveness 
of these systems it is easy note from table II that net 
difference is even less than 200 grams. In the 500 day 
cycle depletion calculations this difference is less than 
100 ppm of the initial TRU loaded. 

 
5. Conclusions 

 
Although there is extensive research in progress to 

design and develop the accelerator or fusion driven 
systems with many targets in mind. In the current study 
it is concluded that the notion of TRU burning with 
accelerator driven systems as the most efficient and the 
best option to burn TRU has little base when employed 
in some real system. Presence of coolant and other 
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necessary materials in the core cannot be eliminated. 
Same is the case with fusion driven systems. So, 
difficulty in manufacturing an ADSR or a Fusion driven 
system is not proportionate to the higher amounts of 
TRU burnt or lower amounts of some TRU isotopes 
produced. 

Preference of these subcritical systems over their 
critical counter parts due to reasons other than TRU 
burning is not treated in this study. 
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