

Development of iron-based composites with high thermal conductivity for DEMO

N. HASHIMOTO, Y. Sawa, X. Zhao

Hokkaido University, N13W8 Kita-ku Sapporo 060-8628, JAPAN

J-K Seminar at KNS Fall Meeting, Oct. 28, 2015, GyeoungJu, South Korea

Candidate Materials for Diverter of DEMO

1111

Plasma

Blanket

Diverter

A Schema of Heat Transfer from PFM (500°C) to Coolant (300°C)

Little Temp. Gradient between PFM and Coolant

2

Comparison of Thermal Conductivity of Plasma Facing Materials ³

Use of CF and CNT for Improvement of Thermal Conductivity

2D alignment of CF and CNT by SPS

4

Improvement of Thermal Conductivity of Fe-based Composites

Matrix	Fe		F82H	
Direction	A	В	А	В
Bulk	70~80 W/m•K		30 W/m•K	
No additive	45.8		21.5	
30% CF	48.8	127.7	18.4	38.9
0.2% CNT	70%	182%	60%	130%

Fe/CF/CNT: 182%, F82H/CF/CNT: 130%

5

Investigating mechanical properties of Fe-Cf-CNT composite materials

- Nanohardness
- Vickers hardness
- Tensile strengths

Experimental Procedure

Mechanical properties

- Nanohardness
- Vickers hardness
- Tensile strengths

Results : Nanohardness

- ✓ Nanohardness of Fe in composite was higher than that of pure Fe due to carburization during sintering.
- \checkmark Cf (L) was harder than Cf (T).
- ✓ Cf was much softer than Fe and Fe composite.

Mechanical properties

- Nanohardness
- Vickers hardness
- Tensile strengths

<u>XFe-70%Cf composite was also tested.</u>

Result : Vickers hardness

Result : Vickers hardness

Mechanical properties

- Nanohardness
- Vickers hardness
- Tensile strengths

Experimental of Tensile test

Dimension of test specimen

14

Thickness: 0.3~0.8 mm

Test condition

Temperature	RT	
Atmosphere	Air	
Strain rate	10 ⁻³ s ⁻¹	

Result : Tensile properties

✓ Strength decreased due to weak bonding between Fe and Cf.

Summary

Nanohardness

✓ Nanohardness of Fe in composite was higher than that of pure Fe because of carburization during sintering.

Vickers hardness

✓ Vickers hardness reflected Cf area fraction in the tip area.

Tensile strengths

✓ Tensile strength of Fe-30%Cf composite was lower than that of pure Fe because of weak bonding between Fe and Cf.

Optional Slides

Change in the layer distance of MWCNTs

Change in the layer distance of MWCNTs

0.7 dpa, T= 200°**C**

r₁ > **r**₂

