
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 12-13, 2016

Generating log-normally distributed random numbers by using the Ziggurat algorithm

Jongsoo Choi

Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142; k209cjs@kins.re.kr

1. Introduction

The quantification of a Probabilistic Safety

Assessment(PSA) of a Nuclear Power Plant(NPP)

always needs the uncertainty analysis(UA). Uncertainty

analyses are usually based on the Monte Carlo method.

Using an efficient random number generator(RNG) is a

key element in success of Monte Carlo simulations.

Log-normal distributed variates are very typical in NPP

PSAs.

This paper proposes an approach to generate log-

normally distributed variates based on the Ziggurat

algorithm and evaluates the efficiency of the proposed

Ziggurat RNG. The proposed RNG can be helpful to

improve the uncertainty analysis of NPP PSAs.

2. RNGs for Monte Carlo Methods

2.1 Log-normal distribution

In probability theory, a log-normal distribution is a

continuous probability distribution of a random variable

whose logarithm is normally distributed. Thus, if the

random variable X is log-normally distributed, then Y =

ln(X) has a normal distribution. Likewise, if Y has a

normal distribution, then x = exp(Y) has a log-normal

distribution. A random variable which is log-normally

distributed takes only positive real values. Its

probability distribution function is:

In NPP PSAs, log-normal distributions are typically

specified using the mean of the distribution itself and a

term called the ‘error factor’. The error factor for a log-

normal distribution is defined as the ratio of the 95th

percentile to the median, or, equivalently, the ratio of

the median to the 5th percentile. The mathematical

relationships between the mean(M) and error factor(EF),

and the parameters of the underlying normal distribution

(μ and σ) are shown by the following equations:

2
)log(,

64485363.1

)log(2
 M

EF

In probability theory, the normal (or Gaussian)

distribution is a very common continuous probability

distribution. The probability density of the normal

distribution is:

2]

2

)(
exp[)(

2

2

y

yf .

Here, μ is the mean or expectation of the distribution

(and also its median and mode). The parameter σ is its

standard deviation with its variance then. If μ = 0 and σ

= 1, the distribution is called the standard normal

distribution or the unit normal distribution denoted by

N(0,1) and a random variable with that distribution is a

standard normal deviate.

2.2 RNGs of N(0,1)

RNGs are very useful in developing Monte Carlo

simulations. The generation of pseudo-random numbers

is an important and common task in computer

programming.

There are several methods to generate a random

number based on a probability density function. These

methods involve transforming a uniform random

number in some way. Because of this, these methods

work equally well in generating random numbers.

Probably the most important transformation functions

for a normal pdf is known as the Box-Muller(1958)

transformation[1]. It allows us to transform uniformly

distributed random variables(U1, U2), to a new set of

random variables with a normal distribution. The most

basic form of the transformation looks like:

)2sin(ln2),2cos(ln2 212211 UUyUUy .

It is known that this particular form of the

transformation has two problems with it. 1) It is slow

because of many calls to the math library. 2) It can have

numerical stability problems when U1 is very close to

zero.

The polar form[2] of the Box-Muller transformation

is both faster and more robust numerically. The

algorithmic description of it is:

1. choosing random points (x, y) in the square −1 < x <

1, −1 < y < 1 until s = x
2
 + y

2
 < 1,

2. and then returning the required pair of normal

random variables as

ssyssx)ln(2,)ln(2 .

Wikipedia, the free encyclopedia, tells us that the

polar method (attributed to George Marsaglia, 1964) is

a pseudo-random number sampling method for

generating a pair of independent standard normal

random variables. While it is superior to the Box–

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 12-13, 2016

Muller transform, the Ziggurat algorithm is even more

efficient.

2.3 Ziggurat algorithm

The Ziggurat algorithm[3] is a method for efficient

random sampling from a probability distribution such as

Normal distribution. The Ziggurat algorithm is a hybrid

method that obtains its efficiency principally by using

rejection sampling with some less efficient calculations

performed for less commonly executed corner cases.

The algorithm is used to generate values from a

monotone decreasing probability distribution. It can also

be applied to symmetric unimodal distributions, such as

the normal distribution, by choosing a value from one

half of the distribution and then randomly choosing

which half the value is considered to have been drawn

from. It was developed by George Marsaglia and others.

The naive rejection method has two main sources of

inefficiency. 1) A large proportion of samples will be

rejected. 2) We must evaluate f(x) for each candidate

point, which for many pdfs is computationally

expensive.

The Ziggurat algorithm addresses these two issues by

covering the pdf with a series of horizontal rectangles

rather than a single square, and in an arrangement that

attempts to cover the pdf as efficiently as possible, i.e

with minimum area outside of the pdf curve. The

following diagram (Fig. 1) demonstrates the approach.

Note that we operate on one side of the pdf (x ≥ 0),

generating both positive and negative sample values

requires that as a final step we randomly flip the sign of

the generated non-negative values.

Fig. 1. Example ziggurat with 7 layers of N(0,1)

The Ziggurat algorithm gives good performance by

using a very simple rejection sampling execution path

for the majority of sample points generated, but with

more expensive calculations performed to maintain

mathematical exactness in some specific corner cases

represented by the distribution tail and the far edges of

the Ziggurat's rectangles.

The Ziggurat algorithm randomly generates a point in

a distribution slightly larger than the desired distribution,

then tests whether the generated point is inside the

desired distribution. If not, it tries again. Given a

random point underneath a probability density curve, its

x coordinate is a random number with the desired

distribution.

The distribution the Ziggurat algorithm chooses from

is made up of n equal-area regions; n−1 rectangles that

cover the bulk of the desired distribution, on top of a

non-rectangular base that includes the tail of the

distribution.

Fig. 2. Structure of a Ziggurat

Given a monotone decreasing probability density

function f(x), defined for all x ≥ 0, the base of the

Ziggurat is defined as all points inside the distribution

and below y1 = f(x1). This consists of a rectangular

region from (0, 0) to (x1, y1), and the (typically infinite)

tail of the distribution, where x > x1 (and y < y1). This

layer (call it layer 1) has area A. On top of this, add a

rectangular layer of width x1 and height A/x1, so it also

has area A. The top of this layer is at height y2 = y1 +

A/x1, and intersects the density function at a point (x2,

y2), where y2 = f(x2). This layer includes every point in

the density function between y1 and y2, but (unlike the

base layer) also includes points such as (x1, y2) which

are not in the desired distribution. Further layers are

then stacked on top. To develop a Ziggurat of size n we

choose x1 such that xn = 0, meaning that the top box,

layer n, reaches the distribution's peak at (0, f(0))

exactly. Layer i extends vertically from yi-1 to yi, and

can be divided into two regions horizontally: the

(generally larger) portion from 0 to xi which is entirely

contained within the desired distribution, and the (small)

portion from xi to xi-1, which is only partially contained.

Fig. 1 shows an example Ziggurat of size 7 (n = 7).

Ignoring for a moment the problem of layer 1, and

given uniform random variables U0 and U1 ∈ [0,1], the

Ziggurat algorithm can be described as:

1. Choose a random layer 1 ≤ i ≤ n.

2. Let x = U0 xi-1 and x = U0 A/y1 for i = 1.

3. If x < xi, return x. (Rectangular region)

4. If i = 1, generate a point from the tail using the

fallback algorithm. (Tail region)

5. Let y = yi-1 + U1 (yi− yi-1).

6. Compute f(x). If y < f(x), return x. (Wedge region)

7. Otherwise, choose new random numbers and go

back to step 1. (Rejected)

Whenever x > x1, the Ziggurat algorithm requires a

fallback. The fallback algorithm, of course, depends on

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 12-13, 2016

the distribution. For a normal distribution, Marsaglia

suggests a compact algorithm:

1. Let x = −ln(U1)/x1.

2. Let y = −ln(U2).

3. If 2y > x
2
, return x + x1.

4. Otherwise, go back to step 1.

2.4 Comparison of Sampling Methods

In order to evaluate the efficiency of the Ziggurat

RNG, four new versions of the Ziggurat methods are

created. The first, labelled Ziggurat (64 layers), is a

Ziggurat of size 64. The last, labelled Ziggurat (2000

layers), is a Ziggurat of size 2000.

To make timing comparisons more robust, I consider

same computer platform(64-bit Windows 7 operating

system with Intel Core i7-2600K CPU @ 3.4GHz ,

16GB RAM) and compiler(Intel Fortran) and two

reference method. The first is a sampling method based

on Marsaglia polar method. The polar method produces

a pair of independent normal variates by using 2

uniform random numbers(URN), but the sampling

method provides 1 normal variate from 1 trial like a

common approach. The other is a uniform RNG using

RAN intrinsic function of Fortran compiler.

 Table I compares the CPU time that is required to

generate 1E10 random numbers. It is shown that a

Ziggurat with large number of layers is faster than a

Ziggurat with small number of layers.

Table I. Problem : generating 1E10 samples of N(0,1)

sampling method CPU time(sec.)

Marsaglia polar 126.84

Ziggurat (64 layers) 65.28

Ziggurat (128 layers) 56.64

Ziggurat (256 layers) 51.91

Ziggurat (2000 layers) 45.40

URN(for reference) 34.32

Table II compares the average numbers of calculations

for generating 1 normal sample for two Ziggurats. It

shows the characteristics of the Ziggurat algorithm

regarding number of layers.

The calculations of wedge and tail cases are more

expensive than those of rectangular cases.

Table II. Average number of calculations for generating

1 sample

Ziggurat

(64 layers)

Ziggurat

(2000 layers)

URNs 1.0758 1.0034

Rectangular cases 0.9881 0.9996

Wedge cases 0.0504 0.0018

Tail cases 0.0013 2.467E-5

3. Conclusions

This paper focuses on evaluating the efficiency of the

Ziggurat algorithm from a NPP PSA point of view.

From this study, we can draw the following conclusions.

- The Ziggurat algorithm is one of perfect random

number generators to product normal distributed

variates.

- The Ziggurat algorithm is computationally much faster

than the most commonly used method, Marsaglia

polar method.

REFERENCES

 [1] G. Box and M. Muller, A Note on the Generation of

Random Normal Deviates, The Annals of Mathematical

Statistics, Vol. 29, No. 2, 610–611, 1958.

[2] G. Marsaglia and T. A. Bray, A convenient method

for generating normal variables, SIAM Rev. 6, 260–264,

1964.

[3] G. Marsaglia and W. Tsang, The Ziggurat Method

for Generating Random Variables, Journal of Statistical

Software, Vol. 5, No. 8, 2000.

