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1. Introduction 

 

The quantification of a Probabilistic Safety 

Assessment(PSA) of a Nuclear Power Plant(NPP) 

always needs the uncertainty analysis(UA). Uncertainty 

analyses are usually based on the Monte Carlo method. 

Using an efficient random number generator(RNG) is a 

key element in success of Monte Carlo simulations. 

Log-normal distributed variates are very typical in NPP 

PSAs.  

This paper proposes an approach to generate log-

normally distributed variates based on the Ziggurat 

algorithm and evaluates the efficiency of the proposed 

Ziggurat RNG. The proposed RNG can be helpful to 

improve the uncertainty analysis of NPP PSAs. 

 

2. RNGs for Monte Carlo Methods 

 

2.1 Log-normal distribution 

 

In probability theory, a log-normal distribution is a 

continuous probability distribution of a random variable 

whose logarithm is normally distributed. Thus, if the 

random variable X is log-normally distributed, then Y = 

ln(X) has a normal distribution. Likewise, if Y has a 

normal distribution, then x = exp(Y) has a log-normal 

distribution. A random variable which is log-normally 

distributed takes only positive real values. Its 

probability distribution function is: 

In NPP PSAs, log-normal distributions are typically 

specified using the mean of the distribution itself and a 

term called the ‘error factor’. The error factor for a log-

normal distribution is defined as the ratio of the 95th 

percentile to the median, or, equivalently, the ratio of 

the median to the 5th percentile. The mathematical 

relationships between the mean(M) and error factor(EF), 

and the parameters of the underlying normal distribution 

(μ and σ) are shown by the following equations: 
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In probability theory, the normal (or Gaussian) 

distribution is a very common continuous probability 

distribution. The probability density of the normal 

distribution is:  



2]

2

)(
exp[)(

2

2

y

yf . 

Here, μ is the mean or expectation of the distribution 

(and also its median and mode). The parameter σ is its 

standard deviation with its variance then. If μ = 0 and σ 

= 1, the distribution is called the standard normal 

distribution or the unit normal distribution denoted by 

N(0,1) and a random variable with that distribution is a 

standard normal deviate. 

 

2.2 RNGs of N(0,1) 

 

RNGs are very useful in developing Monte Carlo 

simulations. The generation of pseudo-random numbers 

is an important and common task in computer 

programming. 

There are several methods to generate a random 

number based on a probability density function. These 

methods involve transforming a uniform random 

number in some way. Because of this, these methods 

work equally well in generating random numbers.  

Probably the most important transformation functions 

for a normal pdf is known as the Box-Muller(1958) 

transformation[1]. It allows us to transform uniformly 

distributed random variables(U1, U2), to a new set of 

random variables with a normal distribution. The most 

basic form of the transformation looks like: 

)2sin(ln2),2cos(ln2 212211 UUyUUy   . 

It is known that this particular form of the 

transformation has two problems with it. 1) It is slow 

because of many calls to the math library. 2) It can have 

numerical stability problems when U1 is very close to 

zero. 

The polar form[2] of the Box-Muller transformation 

is both faster and more robust numerically. The 

algorithmic description of it is: 

1. choosing random points (x, y) in the square −1 < x < 

1, −1 < y < 1 until s = x
2
 + y

2
  < 1, 

2. and then returning the required pair of normal 

random variables as 

ssyssx )ln(2,)ln(2  . 

Wikipedia, the free encyclopedia, tells us that the 

polar method (attributed to George Marsaglia, 1964) is 

a pseudo-random number sampling method for 

generating a pair of independent standard normal 

random variables. While it is superior to the Box–
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Muller transform, the Ziggurat algorithm is even more 

efficient. 

 

2.3 Ziggurat algorithm  

 

The Ziggurat algorithm[3] is a method for efficient 

random sampling from a probability distribution such as 

Normal distribution. The Ziggurat algorithm is a hybrid 

method that obtains its efficiency principally by using 

rejection sampling with some less efficient calculations 

performed for less commonly executed corner cases. 

The algorithm is used to generate values from a 

monotone decreasing probability distribution. It can also 

be applied to symmetric unimodal distributions, such as 

the normal distribution, by choosing a value from one 

half of the distribution and then randomly choosing 

which half the value is considered to have been drawn 

from. It was developed by George Marsaglia and others. 

The naive rejection method has two main sources of 

inefficiency. 1) A large proportion of samples will be 

rejected. 2) We must evaluate f(x) for each candidate 

point, which for many pdfs is computationally 

expensive. 

The Ziggurat algorithm addresses these two issues by 

covering the pdf with a series of horizontal rectangles 

rather than a single square, and in an arrangement that 

attempts to cover the pdf as efficiently as possible, i.e 

with minimum area outside of the pdf curve. The 

following diagram (Fig. 1) demonstrates the approach. 

Note that we operate on one side of the pdf (x ≥  0), 

generating both positive and negative sample values 

requires that as a final step we randomly flip the sign of 

the generated non-negative values. 

 

 
Fig. 1. Example ziggurat with 7 layers of N(0,1) 
 

The Ziggurat algorithm gives good performance by 

using a very simple rejection sampling execution path 

for the majority of sample points generated, but with 

more expensive calculations performed to maintain 

mathematical exactness in some specific corner cases 

represented by the distribution tail and the far edges of 

the Ziggurat's rectangles. 

The Ziggurat algorithm randomly generates a point in 

a distribution slightly larger than the desired distribution, 

then tests whether the generated point is inside the 

desired distribution. If not, it tries again. Given a 

random point underneath a probability density curve, its 

x coordinate is a random number with the desired 

distribution. 

The distribution the Ziggurat algorithm chooses from 

is made up of n equal-area regions; n−1 rectangles that 

cover the bulk of the desired distribution, on top of a 

non-rectangular base that includes the tail of the 

distribution. 

 

 
Fig. 2. Structure of a Ziggurat 

 

Given a monotone decreasing probability density 

function f(x), defined for all x ≥  0, the base of the 

Ziggurat is defined as all points inside the distribution 

and below y1 = f(x1). This consists of a rectangular 

region from (0, 0) to (x1, y1), and the (typically infinite) 

tail of the distribution, where x > x1 (and y < y1). This 

layer (call it layer 1) has area A. On top of this, add a 

rectangular layer of width x1 and height A/x1, so it also 

has area A. The top of this layer is at height y2 = y1 + 

A/x1, and intersects the density function at a point (x2, 

y2), where y2 = f(x2). This layer includes every point in 

the density function between y1 and y2, but (unlike the 

base layer) also includes points such as (x1, y2) which 

are not in the desired distribution. Further layers are 

then stacked on top. To develop a Ziggurat of size n we 

choose x1 such that xn = 0, meaning that the top box, 

layer n, reaches the distribution's peak at (0, f(0)) 

exactly. Layer i extends vertically from yi-1 to yi, and 

can be divided into two regions horizontally: the 

(generally larger) portion from 0 to xi which is entirely 

contained within the desired distribution, and the (small) 

portion from xi to xi-1, which is only partially contained. 

Fig. 1 shows an example Ziggurat of size 7 (n = 7). 

Ignoring for a moment the problem of layer 1, and 

given uniform random variables U0 and U1 ∈ [0,1], the 

Ziggurat algorithm can be described as: 

1. Choose a random layer 1 ≤  i ≤  n. 

2. Let x = U0 xi-1 and x = U0 A/y1 for i = 1.  

3. If x < xi, return x.  (Rectangular region) 

4. If i = 1, generate a point from the tail using the 

fallback algorithm. (Tail region) 

5. Let y = yi-1 + U1 (yi− yi-1). 

6. Compute f(x). If y < f(x), return x. (Wedge region) 

7. Otherwise, choose new random numbers and go 

back to step 1. (Rejected) 

Whenever x > x1, the Ziggurat algorithm requires a 

fallback. The fallback algorithm, of course, depends on 
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the distribution. For a normal distribution, Marsaglia 

suggests a compact algorithm: 

1. Let x = −ln(U1)/x1. 

2. Let y = −ln(U2). 

3. If 2y > x
2
, return x + x1. 

4. Otherwise, go back to step 1. 

 

2.4 Comparison of Sampling Methods 

 

In order to evaluate the efficiency of the Ziggurat 

RNG, four new versions of the Ziggurat methods are 

created. The first, labelled Ziggurat (64 layers), is a 

Ziggurat of size 64. The last, labelled Ziggurat (2000 

layers), is a Ziggurat of size 2000. 

To make timing comparisons more robust, I consider 

same computer platform(64-bit Windows 7 operating 

system with Intel Core i7-2600K CPU @ 3.4GHz , 

16GB RAM) and compiler(Intel Fortran) and two 

reference method. The first is a sampling method based 

on Marsaglia polar method. The polar method produces 

a pair of independent normal variates by using 2 

uniform random numbers(URN), but the sampling 

method provides 1 normal variate from 1 trial like a 

common approach. The other is a uniform RNG using 

RAN intrinsic function of Fortran compiler. 

 Table I compares the CPU time that is required to 

generate 1E10 random numbers. It is shown that a 

Ziggurat with large number of layers is faster than a 

Ziggurat with small number of layers. 

 

Table I. Problem : generating 1E10 samples of N(0,1) 

sampling method CPU time(sec.) 

Marsaglia polar 126.84  

Ziggurat (64 layers) 65.28  

Ziggurat (128 layers) 56.64  

Ziggurat (256 layers) 51.91  

Ziggurat (2000 layers) 45.40  

URN(for reference) 34.32  

 

Table II compares the average numbers of calculations 

for generating 1 normal sample for two Ziggurats. It 

shows the characteristics of the Ziggurat algorithm 

regarding number of layers.  

The calculations of wedge and tail cases are more 

expensive than those of rectangular cases.  

 

Table II. Average number of calculations for generating 

1 sample 

  
Ziggurat 

(64 layers) 

Ziggurat 

(2000 layers) 

# URNs  1.0758 1.0034 

# Rectangular cases 0.9881 0.9996 

# Wedge cases 0.0504 0.0018 

# Tail cases 0.0013 2.467E-5 

 

3. Conclusions 

 

This paper focuses on evaluating the efficiency of the 

Ziggurat algorithm from a NPP PSA point of view. 

From this study, we can draw the following conclusions. 

- The Ziggurat algorithm is one of perfect random 

number generators to product normal distributed 

variates.  

- The Ziggurat algorithm is computationally much faster 

than the most commonly used method, Marsaglia 

polar method.  
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