Comparison of 2D and 3D Experiments for IVR

2016.05.13

Hae-Kyun Park, Su-Hyeon Kim, Bum-Jin Chung

Department of Nuclear Eng., Kyung Hee Univ., Korea

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

Introduction

No one is sure actually what happens in the reactor vessel in a severe accident

- 2 -

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

Introduction

2 representative strategies for mitigation of severe accident

- In-Vessel Retention External Reactor Vessel Cooling (IVR-ERVC)
 ✓ Applied to a 1000 MW class
- External core catcher cooling
 ✓ Applied to a 1800 MW class

External core catcher cooling

Department of Nuclear Engineering Kyung Hee University

Introduction

Nuclear fuels melt in a severe accident condition

Technical issues on oxide pool (2 layer model)

Natural convection phenomena

- The corium descends along the curvature
- The concentrated corium at the bottom rises to the top
- Unstable flow in the vicinity of the top
- Isothermal condition on inner walls by ERVC

• Technical issues

- High Ra'
- Angle dependent heat flux

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering **Kyung Hee University**

Summary of existing studies (2-Dimensioanl)

Facilities	BALI	COPO I	СОРО II	SIMECO	SIGMA CP
Geometry				And the second s	
Working fluids	Water	ZnSO ₄ -H ₂ O	ZnSO ₄ -H ₂ O	NaNO ₃ -KNO ₃	Air and water
Volumetric	Joule heating	Joule heating	Joule heating	Joule heating	Joule heating
heat source	(Lattice shaped)	(Horizontal)	(Horizontal)	(Horizontal)	(Bend shaped)
Ra' _H	$10^{13} - 10^{17}$	$1.24 \times 10^{14} -$ 1.61×10^{15}	$8 \times 10^{14} - 1.4 \times 10^{15}$	$1.51 \times 10^{13} -$ 3.14×10^{13}	$5.71 \times 10^{6} -$ 7.04×10^{11}
Nu _{up}	_	_	Uniform	_	Scattered
Nu _{dn}	Maximum at the top	Maximum at the top	Maximum at the top	Peak at lower curve	Peak at lower curve

Summary of existing studies (3-Dimensioanl)

Facilities	SIGMA-3D	LIVE	UCLA	АСОРО
Geometry		camera observation heating system heat flux sensor and thermocouples vessel cooling	Figure 2 cuts	Le Terrace Preter
Working fluids	Air	Water	Freon-113	Water
Volumetric	Joule heating	Joule heating	Miorowaya	Dro booting
heat source	(Bend shaped)	(Ring array)	Microwave	Pre-nearing
Ra' _H	4.46×10^{8}	1.2×10^{14}	$5 \times 10^{11} - 8 \times 10^{13}$	$1 \times 10^{14} - 2 \times 10^{15}$
Nu _{up}	Scattered	-	-	-
Nu _{dn}	Peak value at lower curve	_	Peak value at lower curve	Maximum at the top

Objective of study

To investigate....

- Angle dependent heat flux
- Dimensional effect (2D vs. 3D)
- Influence of the modified Rayleigh numbers
- Phenomenological analyses (Poorly conducted in previous studies)

Experimental Methodology

• Analogy between heat transfer and mass transfer

< Governing equations > < Dimensionless numbers > Heat transfer Mass transfer Heat transfer Mass transfer $h_m L$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ hL Sh Nu D_m k $\overline{\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X}$ $\frac{V}{D_m}$ \boldsymbol{v} Pr Sc α $\frac{\overline{DC}}{Dt} = D\nabla^2 C$ $gL^3 \Delta \rho$ $\frac{DT}{Dt} = \alpha \nabla^2 T$ $g\beta\Delta TL^3$ Ra Ra $D_m v \rho$ αv

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

Similarity

From the volumetrically heating phenomenon point of view,

Rayleigh number $(Ra) \rightarrow Modified Rayleigh number (Ra')$

 $Ra'_{H} = Ra_{H} \times Da$, where Damköhler number $(Da) = \frac{q'''H^{2}}{k\Delta T}$

$$Ra'_{H} = \frac{g\beta\Delta TH^{3}}{\alpha\nu} \times \frac{q'''H^{2}}{k\Delta T} = \frac{g\beta q'''H^{5}}{\alpha\nu k}.$$

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

Similarity

Heat flux (q), temperature (T), thermal conductivity (k)

Current (I), concentration (C), mass diffusivity (D_m)

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

Similarity

Thus, the Ra' in mass transfer system can be expressed by

$$Ra_{H} = \frac{gH^{3}\Delta\rho}{D_{m}\mu} = 128.5 \frac{gH^{3}\Delta C}{D_{m}\mu}$$
, where $\frac{\Delta\rho}{\Delta C} \sim 128.5$

$$Ra'_{H} = Da_{m} \times Ra_{H} = \frac{(1 - t_{Cu^{2+}})I'''H^{2}}{nFD_{m}\Delta C} \times 128.5 \frac{gH^{3}\Delta C}{D_{m}\mu} = 128.5 \frac{(1 - t_{Cu^{2+}})gI'''H^{5}}{nFD_{m}^{2}\nu\rho}$$

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

- 12 -

Test matrix

Dimension	Ra'	<i>H</i> (cm)
	5.00×10^{12}	4.2
2D	1.21×10^{14}	10.0
	9.86×10^{14}	16.7
	8.63×10^{12}	4.2
3D	2.02×10^{14}	10.0
	1.45×10^{15}	16.7

Sc(Pr) = 2,014 (Fixed)

Method

Isothermal heating condition \rightarrow Using electroplating mass transfer system

• Decrease of the copper ion concentration, the working fluid becomes lighter

Isothermal cooling condition → Reactor vessel inner wall (Existing experiments)

• Corium becomes heavier, due to the ERVC system

In order to establish cooling condition using mass transfer system. the direction of gravity need to be inverted

Method

Inverted test rig was designed to simulate oxide pool using mass transfer system

Mass Transfer Experimental Rig for Oxide Pool (MassTER-OP)

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

MassTER-OP

MassTER-OP2

MassTER-OP3

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

Measurement Verification

Average discrepancies between piecewise and one-piece

- Lower head < 4.2 %
- Top plate < 7.4 %

Comparisons of existing results with MassTER-OP results

- Nu_{dn} was measured 40 % lower than existing results
- Nu_{up} was measured 40 60 % higher than existing results

- *Pr* ~ or << 1

 ✓ Momentum BL, towards the top plate can not cover bulk fluids

 Nu_{up} Enhances
 Pr >> 1
 - ✓ Momentum BL, towards the top plate covers bulk fluids

Comparisons of existing results with MassTER-OP results

- Heat flux increased as angle increased in both 2D and 3D cases
- But, heat fluxes of the 90 degrees were showed different trend

• Roughly simulated results using FLUENT (2D)

• Boundary layer overlap \rightarrow Impair the heat transfer

- Unwanted voids may formed in the bulk when filling up the test rig
- And the voids will move to the edge due to the main stream

• Heat transfer in the vicinity of the 90 degrees may impaired by the voids

- 2D results showed higher Nu ratio than 3D results
- Thermal boundary layer was overlapped along the curvature in the 3D cases

- 2D results showed similar trend regardless of the Ra'
- But, 3D results affected by the Ra' in the vicinity of the 90 degrees

- Rising flow force at the center is different due to the geometrical feature
- Flows at the top plate, either

- Heat transfer of the top plate was enhanced by rising flow
- Outstanding trend is shown in the 3D cases

• Correlations for 2D and 3D angular Nu ratio were developed

 $Nu_{Ratio(dn)} = A + B \theta + C \theta^2 + D \theta^3 + E \theta^4 + F \theta^5$

	2D		3D	
Ra'_{H}	-	1013	1014	1015
Α	2.28×10^{-1}	3.23×10^{-2}	7.17×10^{-2}	11.40×10^{-2}
В	1.32×10^{-2}	2.40×10 ⁻²	4.12×10^{-2}	2.91×10 ⁻²
С	4.02×10^{-4}	-2.97×10^{-3}	-4.00×10 ⁻³	-2.61×10^{-3}
D	-1.56×10 ⁻⁶	1.486×10 ⁻⁴	1.672×10^{-4}	1.125×10^{-4}
Ε	-2.19×10 ⁻⁷	-2.607×10^{-6}	-2.647×10 ⁻⁶	-1.797×10^{-6}
F	2.31×10 ⁻⁹	1.514×10 ⁻⁸	1.423×10 ⁻⁸	9.672×10 ⁻⁹

KNS Spring Meeting Jeju, Korea, 12-13, May 2016 Department of Nuclear Engineering Kyung Hee University

• Multiplier was developed

$$Nu_{3D} = Nu_{2D} \times \phi$$

where,

$$\phi = 0.7e^{A}$$

 $A = 10^{-5} (\theta - 57.95)^{3} (\frac{1.81 \times 10^{13}}{Ra'})^{0.24} + 0.122$

• Thus, 2D result is able to substitutes those of the 3D case

- Almost similar Nu ratios were measured at 2D cases
- But, maximum Nu ratios were measured at 3D cases
- Enhanced rising flow causes the results

Conclusion

- Natural convection of 2-layer model oxide pool was investigated by mass transfer experimental test rig
 - ✓ High Ra' with compact test rig (simple and cheap)
 - ✓ 2D and 3D experiments
 - \checkmark *Ra''s* were varied (varying height of the test rig)
- Nu_{dn} 's were 40 % lower but Nu_{up} 's were 40 to 60 % higher than existing studies, but total Nu were measured within 20 %
- Angular heat fluxes
 - ✓ 2D: Not affected by Ra'
 - ✓ 3D: Affected by Ra' in the vicinity of the 90 degrees
- Top plate heat fluxes
 - $\checkmark\,$ 2D: Measured in an almost identical trend at all position
 - \checkmark 3D: Maximum value at the center due to the strong rising flow

Conclusion

- Local heat fluxes were measured in different characteristics between 2D and 3D cases
 ✓ The multiplier was developed
 - ✓ Mean Nu trends were similar in 2D and 3D cases due to the compensated those local heat transfer results

• Thus, 2D experiment is able to substitutes 3D experiment

