Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 12-13, 2016

Generating Importance Map for Geometry Splitting using Discrete Ordinates Code in Deep
Shielding Problem

Jong Woon Kim* and Young-Ouk Lee*
“Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon, Korea, 305-353
“Corresponding author: jwkim@kaeri.re.kr

1. Introduction

To design a radiation facility, radiation shielding
calculation should be performed. Mostly, MCNP [1]
code is used. When we use MCNP code for a deep
shielding problem, we prefer to use variance reduction

technique such as geometry splitting, or weight window,

or source biasing to have relative error within reliable
confidence interval.

To generate importance map for geometry splitting in
MCNP calculation, we should know the track entering
number and previous importance on each cells since a
new importance 1is calculated based on these
information.

If a problem is deep shielding problem such that we
have zero tracks entering on a cell, we cannot generate
new importance map. In this case, discrete ordinates
code can provide information to generate importance
map easily.

In this paper, we use AETIUS code as a discrete
ordinates code. Importance map for MCNP is generated
based on a zone average flux of AETIUS calculation.
The results of MCNP with/without generated
importance map are discussed.

2. Methods and Results
2.1 Discrete Ordinates Code

As a discrete ordinates code, we use AETIUS (An
Easy modeling Transport code uslng Unstructured
tetrahedral mesh, Shared memory parallel) code. This is
programed using f90 and uses Gmsh [2] as a pre- and
post- processing program. Before naming our code as
AETIUS, it was tested on several applications [3,4].
MUST (Multi-group Unstructured geometry Sy
Transport) is a twin code that programed with C++
[5,6]. The overall calculation flow of AETIUS is shown
in Fig. 1.

2.2 Importance Calculation for Geometry Splitting

In the geometry splitting, the strategy to generate
importance map is very simple. We increase importance
proportional to the inverse ratio of the reduced number
of particles between cell ; —1 and i [7,8,9]. It is shown
in Eq. (1).
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where ;j is index of cell, ; =1 for cell with source, i =/
for cell with tally.

One example is shown in Fig. 2. Source is at the top
and particle number is decreasing as passing though the
cells from source cell to tally cell.

To have particle number in each cell, we multiply
tracks and weight (inverse of importance) of the cell ;
since the tracks is the number of track with weight
(inverse of importance) in the MCNP output.
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Fig. 1. The overall calculation flow of AETIUS.
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Fig. 2. New importance calculation method in geometry
splitting.

To generate importance map with AETIUS, we
calculate total flux averaged over each cell and use it as
particle number in Eq. (1).

2.3 Numerical Test

For a numerical test, we model a simple deep
shielding problem as Fig. 3. A ImxImxIm cube is
located at the center of origin (0,0,0) and filled with air.
Concrete covers the outside of the cube. A point source
is located at the origin (0,0,0) and the thickness of
concrete block in the x-direction is 3m and 50cm for the
other directions.
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Three meter concrete block is divided into 30
concrete slabs in the x-direction to calculate zone
average flux for generating importance map.
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Fig. 3. Overview of the deep shielding problem.

We also prepared identical MCNP input as Fig. 4.
Cell number begins from 201 to 230 and the importance
map will be calculated on these cells.

Output of MCNP calculation with imp=1 for all cells
is shown in Fig. 5. As we can see, the tracks entering
are decreasing as particles passing though the concrete
slabs. Moreover, particles could not reach further than
cell 222 (255cm<x<265cm).
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Fig. 5. The tracks entering result of MCNP calculation with
imp=1 for all cells.
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Fig. 6. Total neutron flux distribution of AETIUS rough
calculation (S,).
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Importance map is a tool to send particles in the
desired direction. As long as a rough calculation result
is reasonable (no need to be exact), the importance map
generated based on the rough calculation will be fine
because the final calculation will be done by MCNP.

The distribution of the total neutron flux is shown in
Fig. 6. Even though this is rough calculation, we might
get reasonable flux distribution for generating
importance map throughout the 30 concrete slabs.

With this result, we generate new importance for
each cell and listed in Table II.

Table II: The generated new importance with rough

AETIUS calculation
Cell Zone average flux
D (rough AETIUS New importance
calculation)

201 7.36225E-05 1.00000E+00
202 5.32632E-05 1.38224E+00
203 3.12678E-05 2.35458E+00
204 1.70093E-05 4.32837E+00
205 8.70144E-06 8.46095E+00
206 4.22182E-06 1.74386E+01
207 1.95704E-06 3.76193E+01
208 8.81854E-07 8.34860E+01
209 3.86407E-07 1.90531E+02
210 1.65407E-07 4.45099E+02
211 7.02829E-08 1.04752E+03
212 2.92618E-08 2.51599E+03
213 1.22555E-08 6.00731E+03
214 5.02769E-09 1.46434E+04
215 2.05939E-09 3.57496E+04
216 8.42347E-10 8.74015E+04
217 3.42232E-10 2.15124E+05
218 1.38613E-10 5.31138E+05
219 5.61192E-11 1.31189E+06
220 2.23822E-11 3.28933E+06
221 8.93220E-12 8.24236E+06
222 3.58504E-12 2.05360E+07
223 1.42216E-12 5.17679E+07
224 5.59929E-13 1.31485E+08
225 2.21151E-13 3.32906E+08
226 8.64023E-14 8.52089E+08
227 3.38039E-14 2.17793E+09
228 1.32024E-14 5.57645E+09
229 5.06056E-15 1.45483E+10
230 1.39297E-15 5.28528E+10

With a new importance, we ran MCNP again and
output is shown in Fig. 7. This time, we obtained
slightly increasing tracks entering and this is much
better than that of MCNP calculation with imp=1 for all
cells.

As we can see in two MCNP results in Fig. 5 and 7,
for too little splitting, the track population will decrease
exponentially with increasing depth and no particles
will ever penetrate the slab.

On the contrary, for too much splitting, the
importance ratios are too large; the track population
will increase exponentially and a particle history will
never terminate.

For these reasons, a reasonably flat tracks entering
distribution might be optimal, but it is not easy to have
reasonably flat tracks entering distribution manually. If

we do this manually, we may spend a lot of time to
have it by doing trial and error.
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Fig. 7. The tracks entering result of MCNP calculation with
generated new importance.
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The cell average fluxes are compared in Fig. 8.
AETIUS fine calculation is used as reference result.
MCNP calculation with imp=1 for all cells gives large
relative error in Fig. 9 and no tallies after 260cm in Fig.
8.

Even though the result of rough AETIUS calculation
is different from the reference result, MCNP result with
the importance map that generated based on the rough
AETIUS calculation gives very good agreement with
the reference result.
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Fig. 8. Comparison of cell average fluxes (with 10 error bar).
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The relative errors of two MCNP runs are shown in
Fig. 9. The relative errors of MCNP calculation with
generated importance map are small enough to satisfy
the MCNP guideline that “relative error should be less
than 0.10 to produce generally reliable confidence
intervals” [1]. However, the relative errors with imp=1
for all cells are getting increased up to 1.0. This is due
to the tracks entering are getting decreased as depth is
increased.
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3. Conclusions

We compared two MCNP results of the deep
shielding problem. One is with imp=1 for all cells. The
other is using importance map generated from AETIUS
rough calculation.

The discretization of space, angle, and energy is not
necessary for MCNP calculation. This is the big merit
of MCNP code compared to the deterministic code.
However, deterministic code (i.e., AETIUS) can
provide a rough estimate of the flux throughout a
problem relatively quickly. This can help MCNP by
providing variance reduction parameters.

Recently, ADVANTG [10] code is released. This is
an automated tool for generating variance reduction
parameters for fixed-source continuous-energy Monte
Carlo simulations with MCNP5 v1.60.

We are planning to add more functions to the
AETIUS by benchmarking it for this application.
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