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Introduction

® Motivation
— To deal with the unavoidable leakage in rotating turbo-machinery

» Since the S-CO, power cycle is a highly pressurized system, certain amount of
leakage flow is inevitable in the rotating turbo-machinery via seals.

— Need of a simple model for estimating the critical flow in a turbo-machinery seal

* To predict the leakage flow rate and calculate the required total mass of working
fluid in a S-CO,, power system to minimize the parasitic loss.

® Goal of this study
— CO, critical flow modeling
+ To identify the mass flow rate of CO, leakage in turbo-machinery
+ Itis essential to design the CO, inventory recovery system.
— CO, critical flow experiment

» To verify the real CO, flow behavior and validate the CO, critical flow model with
experimental results
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Description of CO, Critical Flow Model

« Sandia National Lab (SNL) +  Korea Atomic Energy Research Institute (KAERI)

—  To lower windage loss, CO, in the rotor cavity — To control the rotor cavity pressure, low-pressure tank,
was scavenged using a booster pump. booster pump, and high-pressure tank were used.
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Description of CO, Critical Flow Model

* University of Wisconsin-Madison, 2009
— To validate certain aspects of safety analyses
— Data characterizing the behavior of supercritical fluids during a blowdown or rapid depressurization

— Experiment to measure the critical mass flux for numerous stagnation thermodynamic conditions,
geometry and outlet tube roughness.

— 1D homogeneous equilibrium model was capable of relatively good (less than 10% error) prediction of the
test data.

— Itis not directly relative to critical flow in S-CO2 turbo-machinery

Compressed air actuated piston to
initiate blowdown

Pressure
Transducer

» Shadowgraphy set up using a fast fram camera to
observe the shocks structure at the exit of the nozzles

+ Some tests were conducted with a target plate located
in front of the jet to measure the reaction force
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Description of CO, Critical Flow Model

« MAN Diesel & Turbo SE, 2015
— An overview of numerical and experimental investigations on S-COz2 flow through carbon floating ring seals.
— Simulation model considers the real gas effect, temperature deformation and the shaft rotation.
— A comparison of the measured data to the model prediction shows an overall good agreement.
— It does not show the dynamic behavior of lower pressure stage.
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* Geometry and wall boundary conditions
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" Description of CO, Critical Flow Model

« Description of CO, critical flow model
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Description of CO, Critical Flow Model

« Assumptions for model

Isentropic critical flow model

* CO, in operating condition behaves like an ideal gas.
(Compressibility factor = 1)

« CO, is stagnant in the CO, tanks.

* Whether the flow is choked or not depends on the conditions of high
pressure CO, tank and the back pressure.

» Choking occurs at the nozzle exit.

* The under-expansion of CO, at the nozzle exit is neglected.

« Used governing equations for model

Isentropic critical flow model
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CO, Critical Flow Experiment

*  Objectives

— To validate the critical flow model with experimental results

Safety Safety
Spare  Valve Spare /e
. . . Vent Spare
* Descrlptlon of experlment vent
— Measuring pressure/temperature variation Measuring P & T _
. o . P of high-pressure tank . MeasuringP & T
during the CO2 injection P of low-pressure tank
— Calculating CO2 mass flux with measured .
pressure/temperature at the nozzle exit ) oressure  Thermocouple .
Table. Design specifications for experimental system L . o
o o i)
Nozzl
Pressure (MPa) 22 e
High/Low-pressure  Temperature (°C) 200
tank
Volume (L) ar
(I.D.: 200mm, H: 1,500mm) L

Pipe connecting .D. (mm) 57

two tanks Length (mm) 1090 o

Heater Electric capacity 5 [7] CCsiniet GOzt =

(Jacket-type) (kW) © 0 — O
Valve type Ball valve Fig. Conceptual design of experimental facility for CO, leak simulation
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CO, Critical Flow Experiment

® Experiment procedure
— Close the ball valve to separate the high and low pressure tanks
— Insert the nozzle between high-pressure CO, tank and low-pressure CO, tank

— Fill the high-pressure tank with CO, from a storage tank until the pressure reaches the maximum
pressure

— Control the initial temperature of high-pressure CO, tank to meet the target point
+ Jacket type heater covered the external of high pressure tank

— Set the target initial conditions by controlling the heater and the vent valve
— Turn off the heater and open the ball valve by hydraulic power of compressed air
— Measure all temperatures and pressures in each point every time until the CO, reaches equilibrium

Table. Experimental conditions

Nozzle diameter (mm) 1.5

Nozzle length (mm) 5.0

High-pressure tank 10~20
Pressure (MPa)
Low-pressure tank 0.101

High-pressure tank ~ 100~150
Temperature (°C)

Low-pressure tank 15

Fig. Experimental Facility for CO, leak simulation 9 < NPNP



CO, Critical Flow Experiment

* Result generating process for CO, critical flow model and experiment

P T(as boundary conditions) P T(as boundary conditions) Initial P, T,
of low-pressure CO, tank of each CO, tank of each CO, tank
CO, density from NIST Critical pressure ratio check y| Critical pressure ratio
Standard Reference database ¢ check
CO, mass change check Mach number check Mach number check

(choked or not) (choked or not)

v

Mass flow rate calculation ¢ *
(= Mass difference for . Mass flux
Mass flux calculation )
every second) calculation
Mass flux calculation Changed P,, T, of
CO,
Update

in each time step

Figure. Flow diagram 1 Figure. Flow diagram 2 Figure. Flow diagram 3
(Experimental tank P, T) (Exp. tank P,T + Code critical flow) (t=0: Exp. tank P,T + Code critical flow,
t>0: Code tank P,T + Code critical flow)
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"COZ Critical Flow Experiment

» Comparison of all experiment results
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CO, Critical Flow Experiment

* Uncertainty analysis
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Pressure (MPa)

Temperature (°C)

CO, Critical Flow Experiment
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« Comparison of 1st experiment and modeling result
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CO, Critical Flow Experiment
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Temperature (°C)

« Comparison of 2nd experiment and modeling result
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| “COZ Critical Flow Experiment

« Comparison of 3rd experiment and modeling result
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.‘602 Critical Flow Experiment

« Comparison of experiments and modeling result
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% CO, Critical Flow Experiment

« Discussion on comparison with CO, critical flow model

— The mass flux calculated by using the measured values has similar trend with the result of CO,
critical flow model in all cases.
— Although initial conditions of exp.1 and 2 are different, experiment results are similar.

* Because density dominates the mass flux and the densities of high and low-pressure tanks in exp. 1 and 2
have similar trend, difference of experiment results is very small.

— Uncertainty of mass flux in high-pressure tank conditions has contrast tendency with in low-
pressure tank.

 Uncertainty g, is increased as density is increased and it increases uncertainty oyy,.

+ Consequently, Uncertainty o, is proportional to density since (191:_fm - 0pm)? term is dominant in a;;.

— Uncertainty of mass flux in low-pressure tank is increased around the equilibrium point.
* Equilibrium point of low-pressure tank is around the CO, critical point.

e S;T)' % around the CO, critical point have about 12 times value of normal condition and it causes the

big uncertainty.

— Experimental temperature trend is somewhat different with numerical temperature trend.
* This difference seems to be due to insufficient insulation and thermal inertia of the CO, critical flow facility.
+ Heat loss from experimental facility seems to be significant since only high-pressure tank was insulated.
» Second reason is the thermal inertia of the heater which surrounds the high-pressure tank and the tank itself.

+ The CO, critical flow model does not consider heat transfer to CO2 from the tank wall and tanks have
thermal inertia.
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CO, Critical Flow Experiment

Temperature (°C)
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C02 Critical Flow Experiment

« Experiment with labyrinth seal geometry nozzle

Sudden flow contraction Sationary wall (seal
M- ry & \( )[

Pin }E | Recirculation |~ \C Recirculation
7. | 1D-Grid jji~ 3 - |- N
in| >— i}~ N ( ) . = ( )
ax : : = N ] - — " -
s < - N ped Pout
il - T /i . LT
] IS g (R | SRS S
E ,/ Yef m *
i
T_T — = = - =

-~ . Rotating wall (shaft)

Tshaﬁ, center

Figure. Conceptual design of real labyrinth seal geometry nozzle 19 g NPNP



C02 Critical Flow Experiment

« Comparison of results with simple nozzle and labyrinth seal geometry nozzle

— labyrinth seal geometry nozzle (D=0.5mm)
—— simple nozzle (D=1.5mm)

30000 - —— simple nozzle ( nine times the time scale)
250001 | ‘
— f
0 | 1
» 20000 Wl H
Né _ | Mw | ﬁ
g 15000 - If ”MW
X L0000 |
2 10000 - H
- h
g l
S 5000-
0 -
] Table. Experiment initial condition (Case 1)
-5000
P (MPa) T (°C)
I ' I I ' I I I !
0 500 1000 1500 2000 2500 High-pressure tank 10.04 1033
Time (sec)
Low-pressure tank 0.101 14.5
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v? summary

« Asimple model for estimating the CO, critical flow in a turbo-machinery seal was
developed.

— To identify the mass flow rate of CO, leakage in turbo-machinery to minimize the parasitic
loss.

« Experiment of CO, critical flow was performed.

— The mass flux calculated by using the measured values has similar trend with the result
of CO, critical flow model in all cases.

— Itis identified that developed isentropic critical flow model can estimate the behavior of
CO, critical flow in S-CO, turbo-machinery.

« Additional experiment with labyrinth seal geometry nozzle was performed.

— The maximum mass fluxes of experiments with simple and labyrinth seal geometry nozzle
are almost the same despite the different diameter.

— Labyrinth seal effect is not identified due to the lack of number of labyrinth seal and
nozzle deformation.
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| Further Works

« The real gas effect, labyrinth seal geometry and, friction factor will be considered in
CO, critical flow model.

* |Insulation in connecting pipes and low-pressure tank will be added and this will
resolve the heat loss problem.

« Experiment of improved labyrinth seal geometry nozzle will be performed.

« Measurement of mass flow rate using gyro sensor will be considered to minimize
the uncertainty of experiment results.

« Study of CO, recovery system design will be performed.
— Seal configuration
— Thermal efficiency loss with CO, leak rate and recovery point
— Calculating the leak rate in turbo-machinery
— Minimizing the parasitic loss by sensitivity analysis of CO, recovery process
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