Experimental and Numerical Analysis of S-CO₂ Critical Flow for SFR Recovery System Design

Transactions of Korean Nuclear Society Spring Meeting, 2016

Min Seok Kim, Hwa-Young Jung, Yoonhan Ahn, Jekyoung Lee, Jeong Ik Lee

Ph.D. Candidate. Dept. of Nuclear & Quantum Engineering, KAIST <u>minskim@kaist.ac.kr</u> +82-42-350-3882

Introduction

Compact S-CO₂ Cycle Design

Variables		B (75 x 2)				
		ІНХ	HTR	LTR	PC	total
Effectiveness	%		95	95		
HS pressure drop	kPa	12.2	59.4	31.7	3.6	174.2
CS pressure drop	kPa	44.3	20.2	15.1	174.3	
Volume	m^3	1.2	7.8	17.7	2.2	28.9
Length	m	0.4	0.9	2	0.4	
Area	m^2	3.1	9.1	8.9	5.5	
60	l.e.	(0.0	524.2	2126.6	220	2953
CO_2 mass	кд	60.9	524.2	2130.0	229	(5906)
Weight	ton	5.4	36.4	76.9	10.4	129.2
Pumping work	kW	47.3			606.6	31.6

Introduction

Research Objectives

- Motivation
 - To deal with the unavoidable leakage in rotating turbo-machinery
 - Since the S-CO₂ power cycle is a highly pressurized system, certain amount of leakage flow is inevitable in the rotating turbo-machinery via seals.
 - Need of a simple model for estimating the critical flow in a turbo-machinery seal
 - To predict the leakage flow rate and calculate the required total mass of working fluid in a S-CO₂ power system to minimize the parasitic loss.
- Goal of this study
 - CO₂ critical flow modeling
 - To identify the mass flow rate of CO₂ leakage in turbo-machinery
 - It is essential to design the CO₂ inventory recovery system.
 - CO₂ critical flow experiment
 - To verify the real CO₂ flow behavior and validate the CO₂ critical flow model with experimental results

•

Preceding Studies on CO2 leak

- Sandia National Lab (SNL)
 - To lower windage loss, CO₂ in the rotor cavity was scavenged using a booster pump.

- Korea Atomic Energy Research Institute (KAERI)
 - To control the rotor cavity pressure, low-pressure tank, booster pump, and high-pressure tank were used.

Preceding Studies on CO2 leak

- University of Wisconsin-Madison, 2009
 - To validate certain aspects of safety analyses
 - Data characterizing the behavior of supercritical fluids during a blowdown or rapid depressurization
 - Experiment to measure the critical mass flux for numerous stagnation thermodynamic conditions, geometry and outlet tube roughness.
 - 1D homogeneous equilibrium model was capable of relatively good (less than 10% error) prediction of the test data.
 - It is not directly relative to critical flow in S-CO2 turbo-machinery

- Shadowgraphy set up using a fast fram camera to observe the shocks structure at the exit of the nozzles
- Some tests were conducted with a target plate located in front of the jet to measure the reaction force

View of the opening systems

Preceding Studies on CO2 leak

• MAN Diesel & Turbo SE, 2015

- An overview of numerical and experimental investigations on S-CO₂ flow through carbon floating ring seals.
- Simulation model considers the real gas effect, temperature deformation and the shaft rotation.
- A comparison of the measured data to the model prediction shows an overall good agreement.
- It does not show the dynamic behavior of lower pressure stage.

Design of a high pressure CRS system

Measured pressure developments within the seal for relevant points

Geometry and wall boundary conditions

-
$$A = \pi (D + Y)Y, \ Y(x) = Y_0(x) + \Delta Y_s(x) - \Delta Y_R(x)$$

Kinematics

$$- \qquad u(x,y) = \begin{cases} \hat{u}(x) \cdot \left(2\frac{y}{Y}\right)^{\frac{1}{n_{R}}}, \ 0 \le y \le \frac{y}{2} \\ \hat{u}(x) \cdot \left(2(1-\frac{y}{Y})\right)^{\frac{1}{n_{S}}}, \ \frac{y}{2} \le y \le Y \end{cases}, \ \mathbf{w}(x,y) = \begin{cases} W - (W - \widehat{w}(x)) \cdot \left(2\frac{y}{Y}\right)^{\frac{1}{n_{R}}}, \ 0 \le y \le \frac{y}{2} \\ \widehat{w}(x) \cdot \left(2(1-\frac{y}{Y})\right)^{\frac{1}{n_{S}}}, \ \frac{y}{2} \le y \le Y \end{cases}$$

Wall shear stress

$$\begin{aligned} & - \quad \tau_R = \frac{\lambda_R}{8} \rho \overline{c_R}^2, \, \tau_S = \frac{\lambda_S}{8} \rho \overline{c_S}^2, \, \tau_{R,ax} = \tau_R \frac{\hat{u}}{c_{\widehat{rel}}}, \\ & \tau_{R,tan} = \tau_R \frac{\hat{w}_{rel}}{\hat{c}_{rel}}, \, \tau_{S,ax} = \tau_S \frac{\hat{u}}{\hat{c}}, \, \tau_{S,tan} = \tau_S \frac{\hat{w}}{\hat{c}} \end{aligned}$$

Balance equations

$$- Q\left(\frac{\partial c}{\partial t} + c \cdot gradc\right) = -gradp + divT$$

Heat transfer

$$- \quad T_{shaft,wall} = T + \frac{q}{\alpha_{flow}}$$

Model Development

• Description of CO₂ critical flow model

Fig. Mechanism of CO_2 leak in the simplified model for numerical analysis

Model Development

Assumptions for model

Isentropic critical flow model

- CO_2 in operating condition behaves like an ideal gas. (Compressibility factor ≈ 1)
- CO_2 is stagnant in the CO_2 tanks.
- Whether the flow is choked or not depends on the conditions of high pressure CO₂ tank and the back pressure.
- Choking occurs at the nozzle exit.
- The under-expansion of CO_2 at the nozzle exit is neglected.
- Used governing equations for model

Isentropic critical flow model

•
$$\frac{P_{CO_2}}{P_{critical}} = \left(1 + \frac{\gamma - 1}{2}\right)^{\gamma/(\gamma - 1)}$$
 • $M_{exit} = \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{P_{CO_2}}{P_{exit}}\right)^{(\gamma - 1)/\gamma} - 1\right]}$
• $G = \frac{P_{CO_2}}{\sqrt{RT_{CO_2}}} \sqrt{\gamma} M_{exit} \left(1 + \frac{\gamma - 1}{2} M_{exit}^2\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$ • $\dot{m} = \rho VA = GA$

Designed Experimental Facility

- Objectives
 - To validate the critical flow model with experimental results
- Description of experiment
 - Measuring pressure/temperature variation during the CO₂ injection
 - Calculating CO₂ mass flux with measured pressure/temperature at the nozzle exit

Table. Design specifications for experimental system

	Design Parameters			
High/Low-pressure tank	Pressure (MPa)	22		
	Temperature (℃)	200		
	Volume (L)	47 (I.D.: 200mm, H: 1,500mm)		
Pipe connecting two tanks	I.D. (mm)	57		
	Length (mm)	1090		
Heater (Jacket-type)	Electric capacity (kW) 5			
Valve type	Ball valve			

Fig. Conceptual design of experimental facility for CO₂ leak simulation

(V)

Designed Experimental Facility

- Experiment procedure
 - Close the ball valve to separate the high and low pressure tanks
 - **Insert** the **nozzle** between high-pressure CO_2 tank and low-pressure CO_2 tank
 - Fill the high-pressure tank with CO₂ from a storage tank until the pressure reaches the maximum pressure
 - Control the initial temperature of high-pressure CO₂ tank to meet the target point
 - Jacket type heater covered the external of high pressure tank
 - Set the target initial conditions by controlling the heater and the vent valve
 - Turn off the heater and open the ball valve by hydraulic power of compressed air
 - Measure all temperatures and pressures in each point every time until the CO₂ reaches equilibrium

Table. Experimental conditions				
Parameters	Conditions			
Nozzle diameter (mm)	1.5			
Nozzle length (mm)	5.0			
Prossure (MPa)	High-pressure tank	10~20		
riessule (Mra)	Low-pressure tank	0.101		
Tomporature (%C)	High-pressure tank	100~150		
Temperature (C)	Low-pressure tank	15		

Fig. Experimental Facility for CO_2 leak simulation

Experiment Results

• Result generating process for CO₂ critical flow model and experiment

10 **2 NPNP**

Experiment Results

Fig. Triple-shaft design for S-CO₂ recompression cycle

Table. Experiment initial condition

		Exp_1	Exp_2	Exp_3
High-pressure	P (MPa)	10.01	13.43	20.16
tank	T (°C)	103.32	161.50	151.17
Low-pressure	P (MPa)	0.101	0.101	0.101
tank	T (°C)	14.50	15.60	14.10

Experiment Results

• Uncertainty analysis

$$G = \frac{1}{A_{nozzle}} \cdot \frac{\Delta m}{\Delta t} = f(A_{nozzle}, \Delta m, \Delta t)$$

$$\sigma_{G}^{2} = (\frac{\vartheta f}{\vartheta \Delta m} \cdot \sigma_{\Delta m})^{2} + (\frac{\vartheta f}{\vartheta \Delta t} \cdot \sigma_{\Delta t})^{2} + (\frac{\vartheta f}{\vartheta A_{nozzle}} \cdot \sigma_{A_{nozzle}})^{2}$$

$$\sigma_{V}^{2} = (\frac{\vartheta h}{\vartheta D_{tank}} \cdot \sigma_{D_{tank}})^{2} + (\frac{\vartheta h}{\vartheta L} \cdot \sigma_{L})^{2}$$

$$\sigma_{\rho}^{2} = (\frac{\vartheta \rho(P,T)}{\vartheta P} \cdot \sigma_{P})^{2} + (\frac{\vartheta \rho(P,T)}{\vartheta T} \cdot \sigma_{T})^{2}$$

$$\sigma_{\Delta m}^{2} = (\frac{\vartheta g}{\vartheta V} \cdot \sigma_{V})^{2} + (\frac{\vartheta g}{\vartheta \rho_{2}} \cdot \sigma_{\rho_{2}})^{2} + (\frac{\vartheta g}{\vartheta \rho_{1}} \cdot \sigma_{\rho_{1}})^{2}$$

$$\sigma_{A_{nozzle}}^{2} = (\frac{\vartheta I}{\vartheta D_{nozzle}} \cdot \sigma_{D_{nozzle}})^{2}$$

$$\Delta m = V(\rho_{2} - \rho_{1}) = V\{\rho(P_{2}, T_{2}) - \rho(P_{1}, T_{1})\} = g(V, \rho_{2}, \rho_{1})$$

$$V = \frac{\pi D_{tank}^2 L}{4} = h(D_{tank}, L) \qquad A_{nozzle} = \frac{\pi D_{nozzle}^2}{4} = I(D_{tank})$$

Experiment Results

Comparison of 1st experiment and modeling result

Experiment Results

Time (sec)

Comparison of 2nd experiment and modeling result

Experiment Results

Comparison of 3rd experiment and modeling result

Experiment Results

• Comparison of experiments and modeling result

Table. Initial properties of all cases

	T (°C)	P (kPa)	ρ (kg/m³)	h (kJ/kg)	s (kJ/kg-K)
Case 1	103.30	10.04	185.45	508.79	1.9420
Case 2	161.50	13.43	194.77	570.35	2.0500
Case 3	151.17	20.16	327.84	524.41	1.8814

Experiment Results

- Discussion on comparison with CO₂ critical flow model
 - The mass flux calculated by using the measured values has similar trend with the result of CO₂ critical flow model in all cases.
 - Although initial conditions of **exp.1 and 2** are different, **experiment results** are **similar**.
 - Because **density** dominates the **mass flux** and the densities of high and low-pressure tanks in exp. 1 and 2 have **similar trend**, **difference** of experiment results is very **small**.
 - Uncertainty of mass flux in high-pressure tank conditions has contrast tendency with in lowpressure tank.
 - Uncertainty σ_{ρ} is increased as density is increased and it increases uncertainty $\sigma_{\Delta m}$.
 - Consequently, Uncertainty σ_G is proportional to density since $(\frac{\vartheta f}{\vartheta \wedge m} \cdot \sigma_{\Delta m})^2$ term is dominant in σ_G .
 - Uncertainty of mass flux in low-pressure tank is increased around the equilibrium point.
 - Equilibrium point of low-pressure tank is around the CO₂ critical point.
 - $\frac{\vartheta \rho(P,T)}{\vartheta P}$, $\frac{\vartheta \rho(P,T)}{\vartheta T}$ around the CO₂ critical point have about 12 times value of normal condition and it causes the big uncertainty.
 - **Experimental temperature** trend is **somewhat different** with numerical temperature trend.
 - This difference seems to be due to insufficient insulation and thermal inertia of the CO₂ critical flow facility.
 - Heat loss from experimental facility seems to be significant since only high-pressure tank was insulated.
 - Second reason is the thermal inertia of the heater which surrounds the high-pressure tank and the tank itself.
 - The CO₂ critical flow model does **not consider heat transfer** to CO₂ from the tank wall and tanks have thermal inertia.

Experiment Results

• T-s and H-s diagram of each tank

		Exp. 1	Exp. 2	Exp. 3
High-pressure tank	P (MPa)	10.04	13.43	20.16
	T (°C)	103.3	161.5	151.2
Low-pressure tank	P (MPa)	0.101	0.101	0.101
	T (°C)	14.5	15.6	14.1

Experiment Results

Experiment with labyrinth seal geometry nozzle

Experiment Results

• Comparison of results with simple nozzle and labyrinth seal geometry nozzle

Table. Experiment initial condition (Case 1)

	P (MPa)	T (°C)
High-pressure tank	10.04	103.3
Low-pressure tank	0.101	14.5

Summary

Summary

- A simple model for estimating the CO₂ critical flow in a turbo-machinery seal was developed.
 - To identify the mass flow rate of CO₂ leakage in turbo-machinery to minimize the parasitic loss.
- Experiment of CO₂ critical flow was performed.
 - The mass flux calculated by using the measured values has similar trend with the result of CO₂ critical flow model in all cases.
 - It is identified that developed isentropic critical flow model can estimate the behavior of CO₂ critical flow in S-CO₂ turbo-machinery.
- Additional experiment with labyrinth seal geometry nozzle was performed.
 - The maximum mass fluxes of experiments with simple and labyrinth seal geometry nozzle are almost the same despite the different diameter.
 - Labyrinth seal effect is not identified due to the lack of number of labyrinth seal and nozzle deformation.

Further Works

Further works

- The **real gas effect, labyrinth seal geometry** and, **friction factor** will be considered in CO₂ critical flow model.
- **Insulation** in connecting pipes and low-pressure tank will be added and this will resolve the heat loss problem.
- **Experiment** of improved labyrinth seal geometry nozzle will be performed.
- Measurement of mass flow rate using **gyro sensor** will be considered to minimize the uncertainty of experiment results.
- Study of CO₂ recovery system design will be performed.
 - Seal configuration
 - Thermal efficiency loss with CO₂ leak rate and recovery point
 - Calculating the leak rate in turbo-machinery
 - Minimizing the parasitic loss by sensitivity analysis of CO₂ recovery process

Reference

Reference

- Hylla, E., Schildhauer, M., Bussow, R., Metz, K., Klawes, R., 2015, "Investigations on Transonic Flow of Super-critical CO₂ Through Carbon Ring Seals". ASME Turbo Expo (2015).
- G.P. Mignot, M.H. Anderson, M.L. Corradini, Measurement of supercritical CO2 critical flow: effects of L/D and surface roughness, Nucl. Eng. Des. 239 (2009) 949–955.
- Hwa-Young Jung. Preliminary Safety Studies of Sodium-CO2 Heat Exchanger in SFR coupled with S-CO2 Brayton Cycle. Thesis, KAIST (2015).
- Stahley, J. S., Dry Gas Seal System Design Standards for Centrifugal Compressor Applications, Proceedings for the Thirty-first Turbomachinery Symposium, 2002
- Steven A. Wright, et al., 2010, Operation and Analysis of a Supercritical CO2 Brayton Cycle, SAND2010-0171
- Martin H.M.. Labyrinth Packings, Engineering, pp 35-36, 1908
- Robert Fuller, et al., 2012, Turbomahinery for Supercritical CO2 Power Cycles, Proceedings of ASME Turbo Expo 2012

THANK YOU

