Experimental Investigation of Condensation with Bundle Geometry for the Passive Containment Cooling System

2016.05.13

Jinhoon Kang^a, Dongwook Jerng^b, Byongjo Yun^{a*}

^aMechanical Engineering Department, Pusan national Univ., Jangjeon-dong, Guemjeong-gu, Busan, ^bSchool of Energy Systems Engineering, Chung-Ang Univ., Heukseok-dong, Dongjak-gu, Seoul,

Contents

- I. Introduction
- **II. Experimental Facility**
- **III. Experiments and Results**
- **IV. Development of bundle factor correlation**
- V. Summary & future plans

Introduction (1)

- Background
 - In case of postulated accidents such as LOCA and MSLB, etc.
 - High pressure and high energy steam releases to containment building.
 - Containment is threatened by released steam.
 - Passive containment cooling system
 - Replacement of active containment spray system
 - Bundle type condensation heat exchanger
 - Considered in the Korean advanced NPP such as APR+ and IPOWER.
 - Previous investigations
 - Condensation experiments for plate and single tube

Introduction (2)

- Objects of Experiments
 - Condensation phenomena of bundle
 - Effect of parameters
 - Suction of steam
 - Screening of steam by adjacent tubes
 - Geometric effects
 - Inclination
 - Pitch to diameter (p/d)

- Development of condensation correlation
 - Correction of deviation between experimental data for bundle and existing correlation for single tube

Experimental Facility (1)

Scaling analysis

Parameter	Scaling Law	Scaling ratio	Value (Proto/Test)	
Tube Diameter(OD/ID)	_{0R} 1/2	1/2	(40/34) / (21.5/15.5)	
Heat Flux Ratio	1/1	1/1	24.35kw/m ²	
Height Ratio	I _{oR}	1/4	5/1.25m	
Tube Number Ratio	a _{oR} l _{oR} -1	1/8032	Зеа	
Containment Volume Ratio	$a_{oR}I_{oR}$	1/42837	2.18m ³	
Total Heat Removal Ratio	$a_{oR}I_{oR}^{1/2}$	1/21418	122885kW/ 5.737kW	

Experimental Facility (2)

- Experimental Apparatus Press
 - Components
 - Bundle : 12 tubes
 - Pressurized vessel
 - Coolant supply line
 - Preheater and pump, etc
 - Immersion heater
 - Measurements
 - Coolant flow
 - Coriolis, Magnetic
 - Temperature
 - K-type thermocouple
 - Pressure
 - Transmitter

Experimental Facility (3)

- Measurement methods
 - Wall temperature

-
$$T_w = T_{s,2} + \frac{\ln(R/r_2)}{\ln(r_2/r_1)}(T_{s,2} - T_{s,1})$$

• Heat transfer coefficient of a tube

-
$$h_{tube} = \frac{mc_p(T_{c,out} - T_{c,in})}{\pi dL(T_{\infty} - T_w)}$$

• Average heat transfer coefficient of a bundle

$$- h_{bundle} = \frac{h_1 + h_2 + h_3 + \dots + h_{12}}{12}$$

• Air mass fraction

-
$$W = \frac{\rho_{air}(P_{air}, T_{\infty})}{\rho_{air}(P_{air}, T_{\infty}) + \rho_{steam}(T_{\infty, sat})}$$

Experimental Facility (4)

- Uncertainty of measurement system
 - Temperature sensor (TC)
 - Calibrated with 0.5°C uncertainty
 - Signal line from TC to DAS was checked with FLUKE 754 calibrator.
 - Flow meter, pressure measurement system
 - Calibration sheets were provided from manufacturer

Parameter	Thermocouple (K type)	Coriolis flow meter	Magnetic flow meter	Pressure transmitter	Differential pressure transmitter
Range	-200°C ~ 1000°C	2~226.8 kg/min	0~2m ³ /h	0~1000kPa	0~60kPa
Error	±0.5°C	0.05%(Reading)	0.50%(Reading)	0.08%(FS)	0.40%(FS)

- Test matrix
 - Single tube experiments
 - Tube Bundle experiments
 - 12 tubes condensation tests
 - Obstacle experiments
 - Each single tube condensation test with 11 dummy tubes
- Bundle Experimental conditions
 - Pitch to diameter of bundle : 2.0, 2.5
 - Vessel pressure
 - 1.5, 2.0, 3.0 and 4.0 bar
 - Inlet temperature of coolant: 70°C
 - Air mass fraction
 - 0.3 ~ 0.8
 - Inclination : Vertical, 14.5°

<sible and becaupier and because

- Heat transfer coefficient according to air mass fraction and inlet temperature
 - Increase of the heat transfer coefficient with decrease in air mass fraction and a increase in inlet temperature.
 - Drastic increase of heat transfer coefficient under air mass fraction 0.1

- Single tube experiments
 - Evaluation of Dehbi correlations(1991, 2015) against single tube data

[1] Dehbi, A. "The effect of noncondensable gases on steam condensation under turbulent natural convection conditions," Diss. Massachusetts Institute of Technology, (1991).
[2] Dehbi, A. "A generalized correlation for steam condensation rates in the presence of air under turbulent free convection," International Journal of Heat and Mass Transfer 86, 11 / 18 pp. 1-15 (2015).

- Bundle experiments
 - Degradation of heat transfer coefficient by screen effect of air mass fraction
 - Enhancement of heat transfer coefficient by
 - Suction effect of steam
 - Containment pressure

on bundle (4 bar, W 0.65)

THE REPORT OF

12/18

- Bundle experiments
 - Comparison between experiments for single tube and bundle under 2.0 bar
 - The deviation decreases with decrease of air mass fraction
 - Evaluation of the Dehbi (2015) correlation against bundle data

Experiments and Results (6) : Obstacle Experiments

- Comparison data between obstacle tube and bundle
 - Increase of heat transfer of outside tube by suction
 - Decrease of those of inside tube by screening effect
 - Improvement of average heat transfer of a bundle by suction effect of a bundle.

Experiments and Results (7) : Bundle Experiments

- Inclination effect
 - Inclined bundle 14.5°
 - Increase of heat transfer coefficients owing to water flowing on lower surface of tube

- Pitch to diameter effect
 - Reduction of screening effect on the central region of bundle
 - Increase of heat transfer with increase of pitch to diameter ratio

<Variation of heat transfer coefficient with > air mass fraction and heat exchanger type

Development of bundle factor correlation

- Bundle condensation correlation
 - Evaluation of the Dehbi correlation against PNU data

$$- f_{bundle} = \frac{h_{bundle}}{h_{\sin gle-tube}} = \left(1.316 \left(\frac{P}{P_{cr}}\right)^{0.07} \left(\frac{T_{\infty} - T_{w}}{T_{cr}}\right)^{-0.0145} - 11\frac{P}{P_{cr}}\right) \times \left(1.08W^{2} - 0.945W + 1.12\right) \left(0.187\frac{P}{d} + 0.65\right)$$

-
$$h_{bundle} = h_{Dehbi,2015} \times f_{bundle}$$

- Condensation test with bundle heat exchanger has been performed for the passive containment cooling system (PCCS).
- Major findings from experiments
 - Decrease of heat transfer coefficient is expected because of screening effect of adjacent tubes (structure) in the tube bundle.
 - However, the heat transfer coefficient is not decreased because suction effect compensates screening effect.
 - The heat transfer coefficient increases as inclination and pitch to diameter increase.
- Bundle factor for correction of Dehbi (2015) correlation was proposed.
- Experimental investigation will be continued for the developments of condensation model in the single and tube bundle conditions.

Q&A

Thank you for your attention

